

NISTIR 7436

An Ontology for Assembly
Representation

Xenia Fiorentini
Iacopo Gambino

Vei-Chung Liang
Sudarsan Rachuri

Mahesh Mani
Conrad Bock

Manufacturing Systems Integration Division
Manufacturing Engineering Laboratory

July 2007

U.S. Department of Commerce
Carlos M. Gutierrez, Secretary

National Institute of Standards and Technology

 James M. Turner, Acting Director

 ii

6.1.1 Components in Planetary Gear System ... 35

6.1.2 Assembly Hierarchy... 35

6.2 Use Case Implementation 41

6.2.1 Asserted Instances and Properties... 42

6.2.2 Inferred Instances and Properties ... 51

6.2.3 Kinematic Information Representation.. 57

6.2.4 Tolerance Representation in the Planetary Gear System...................... 58

7 Results and Discussion..59

7.1 Model Advantages 60

7.2 Limitations and future research directions 61

8 Acknowledgements ...62

9 Disclaimer..63

10 References..63

11 Appendix..66

 iii

List of Figures
Figure 1 Class diagram of the Core Product Model ... 3
Figure 2 Overview of the OAM-UML ... 7
Figure 3 Protégé composition ... 12
Figure 4 UML Property Class... 13
Figure 5 A Property Class connecting two different Object Classes.......................... 13
Figure 6 Property pattern for two Object Classes... 13
Figure 7 First part of the translation of Property Classes ... 14
Figure 8 Second part of the translation of Property Classes....................................... 14
Figure 9 A is composed by B, C and D .. 17
Figure 10 B is an assembly too... 18
Figure 11 B and D are not directly connected .. 18
Figure 12 Example of an assembly composition .. 19
Figure 13 The assembly representation in OWL .. 20
Figure 14 Usage pattern.. 24
Figure 15 Example of the usage pattern ... 25
Figure 16 Property rules ... 27
Figure 17 PartOf rule .. 28
Figure 18 Example of a not allowed assembly ... 28
Figure 19 Planetary Gear System ... 35
Figure 20 Exploded view of the Planetary Gear System.. 35
Figure 21 Planetary Gear structure ... 37
Figure 22 Planetary Gear hierarchy .. 38
Figure 23 Connections between parts... 39
Figure 24 Output Housing Assembly ... 39
Figure 25 Ring Gear Assembly .. 40
Figure 26 Planet Gear-carrier Assembly .. 40
Figure 27 Planet Carrier Assembly and Sungear.. 41
Figure 28 Output Housing Assembly ... 41
Figure 29 Kinematic Diagram of Planetary Gear System .. 57
Figure 30 Sungear tolerances.. 59
Figure 31 Dynamic Range Example... 61
Figure 32 Open World Assumption.. 62

 iv

List of Tables
Table 1 Artifact Association rules .. 30
Table 2 Assembly Feature Association rules.. 31
Table 3 Assembly Feature Association Representation rules..................................... 32
Table 4 Kinematic Path rules.. 32
Table 5 SameAs rule... 33
Table 6 PartOf rules.. 33
Table 7 Rules for not Allowed Artifacts... 34
Table 8 Rule for not allowed Pair Frame.. 34
Table 9 Components of the Planetary Gear System ... 36
Table 10 Artifact: asserted instances and properties .. 43
Table 11 Part: asserted instances and properties .. 45
Table 12 OAM Features: asserted instances... 47
Table 13 ArtifactAssociation: asserted instances and properties................................ 48
Table 14 AssemblyFeatureAssociation: asserted instances and properties 50
Table 15 AssemblyFeatureAssociationRepresentation: asserted instances and
properties .. 51
Table 16 Assembly inferred properties... 53
Table 17 Meaning_Less_Artifact inferred instances .. 53
Table 18 Part: inferred properties ... 54
Table 19 ArtifactAssociation: inferred properties .. 55
Table 20 AssemblyFeatureAssociation: inferred property ... 56
Table 21 AssemblyFeatureAssociationRepresentation: inferred properties............... 57
Table 22 Kinematic Pairs and Associated Parts of Planet Gear System 58

 v

List of Acronyms
NIST- National Institute of Standards and Technology

PLM – Product Lifecycle Management

CAD – Computer Aided Design

UML – Unified Modeling Language

OWL – Ontology Web Language

ERP – Enterprise Resource Planning

DSS – Decision Support System

SWRL -Semantic Web Rule Language

CAE- Computer Aided Engineering

URI- Universal Resource Identifier

OAM- Open Assembly Model

CPM- Core Product Model

MOKA- Methodology and tools Oriented to Knowledge-Based Engineering Applications

OWL-DL Ontology Web Language Description Logic

RDF- Resource Description Framework

AFA- Assembly Feature Association

AFAR- Assembly Feature Association Representation

 1

1 Introduction
The development of an ontological assembly representation was initiated from several
considerations concerning assembly representation for PLM. The complete distribution
and control of information between different stake holders is the underlying goal for the
PLM approach. To achieve an interoperability level that could enable efficient
implementation of PLM, it is necessary to identify a common data structure to allow data
exchange between different stake holder’s platforms [1] [2]. A first step towards
achieving this goal is to develop information models with standard data structures to
support interoperability. An ontology based approach with additional reasoning
capabilities could create a new perspective for PLM [3] [4] [5].

In an industrial scenario, many products are assemblies composed of either individual
parts or subassemblies produced from different suppliers. An important reason to model
assemblies using an ontology is to test the advantages of a semantic approach where the
meaning of the modeled concepts is formally defined. The semantic model is especially
useful to capture the evolution of the assembly from the design phases and throughout the
life of the product. An assembly model is required to represent relationships between
artifacts (for example parts, assemblies. We will formally define artifacts in the following
sections) that characterize an assembly representation of a product model.

The ontological assembly model can help in achieving various levels of interoperability
as required to enable the full potential of PLM. Besides developing a semantic assembly
information model, we further extend this model to incorporate reasoning capabilities.
This report is organized as follows: Section 2 presents the previous and related work at
NIST, here we briefly discuss the UML [6] versions of NIST’s CPM [7] [8] and OAM
models [9]. Section 3 presents useful methodologies and relevant tools used for the
creation of the ontology. Section 4 presents the OWL [10] model of the assembly
representation. Section 5 presents the reasoning capabilities of the ontology
representation. Section 6 presents an implemented case study to explain the Ontological
Assembly Model including the applied rules and reasoning capabilities. Finally Section 7
summarizes the report with results and discussion.

2 Previous Works at NIST
NIST’s CPM and OAM [9] are a starting point towards developing an ontological
assembly model. CPM is a product representation model while OAM is the CPM
extension for an assembly representation. Both CPM and OAM were originally UML
models [11] [12]. In this section a brief overview of the UML versions of CPM and OAM
are presented for better understanding.

2.1 Core Product Model
The CPM [7] [8] was intended to form a base for future systems that could respond to the
demands of the next generation CAD systems besides providing improved

 2

interoperability among future software. CPM is an abstract model with generic or
meaningful semantics about a particular domain to be embedded within an
implementation model and the policy of use of that model. The key concept that makes
CPM a candidate for supporting the full range of PLM activities is that a product is
described by a triad:

 Function: what the artifact is supposed to do; the term function is often used
synonymously with the term intended behavior.

 Form: the proposed design solution for the design problem specified by the
function; in CPM, the artifact’s physical characteristics are modeled in terms of its
geometry (the “traditional” domain of CAD models) and material properties.

 Behavior: how the artifact implements its function in terms of the engineering
principles incorporated into a behavioral or causal model; application of the
behavioral model to the artifact describes or simulates the artifact’s observed
behavior based on its form [13].

Figure 1 shows a UML diagram [14] [6] of the CPM composed of four categories of
classes: classes that provide supporting information for the objects (abstract classes),
physical or conceptual objects classes, classes that describe associations (relationships)
among the objects and classes that are commonly used by other classes. For more
information please refer to Fenves et al, 2001.

In the rest of this report, the following naming conventions are used: names of CPM
classes are written in boldface and capitalized (e.g., CoreProductModel,
EntityAssociation, Artifact). Names of attributes are in boldface and lower case (e.g.,
information) while names of instances are in italics (e.g., cylindricalForm).

The common information is stored in five supporting classes: exploring the model
starting from the highest level of generalization, the first class CoreProductModel
represents the highest level of generalization. For this class we define the common
attributes type, name and information and they are inherited by all the classes of
the model.

CommonCoreObject is the base class for all the object classes.
CommonCoreRelationship and its specializations may be applied to instances of classes
derived from this class.

CommonCoreRelationship is the base class from which all association classes are
specialized.

 3

Figure 1 Class diagram of the Core Product Model

CoreEntity is the base class from which the classes Artifact and Feature are
specialized. EntityAssociation relationships may be applied to entities in this class.

CoreProperty is an abstract class from which the classes Function, Flow, Form,
Geometry and Material are specialized. Constraint relationships may be applied to
instances of this class.

The following constitute the object classes:

Artifact is the key object class in the model. It represents a distinct entity in a product,
whether a component, part, subassembly or assembly. All the latter entities can be
represented and interrelated through the subArtifacts/subArtifactOf
containment hierarchy.

 4

Feature is a portion of the artifact’s form that has some specific function assigned to it.
Thus, an artifact may have design features, analysis features, manufacturing features, etc.
Feature has its own containment hierarchy, so that compound features can be created out
of other features. A Feature has attributes of Function and Form, but does not have a
different Behavior since its Behavior is defined in the Artifact containing the Feature.

Port is a specific kind of feature, sometimes referred to an interface feature.

Specification is the collection of information relevant to an Artifact deriving from
customer needs and/or engineering requirements; it is a container for the specific
Requirements that the artifact must satisfy.

Requirement is a specific element of the Specification of an artifact that governs some
aspect of its function, form, geometry or material. Requirements cannot be applied to
Behavior, which is strictly determined by a behavioral model. This is because
requirements represent what the artifact is supposed to do while Behavior is the observed
performance of the Artifact.

Function represents what the artifact or feature is supposed to do. The artifact satisfies
customer needs and/or engineering requirements largely through its function.

TransferFunction is a specialized form of Function involving the transfer of an input
flow into an output flow.

Flow is the medium that serves as the output of one or more transfer function(s) and the
input of one or more other transfer function(s).

Behavior describes how the artifact implements its function; it is governed by physical,
chemical or other engineering principles that are incorporated into a behavioral or causal
model.

Form of the artifact or feature is the design solution for the problem specified by the
function. In the CPM, the artifact’s or feature’s physical characteristics are represented by
two distinct classes, namely:

Geometry is the spatial description of an artifact or feature.

Material is the material composition of an artifact or feature.

The following constitutes the association (relationship) classes derived from the
CommonCoreRelationship class:

Constraint is a specific shared property of a set of entities that must hold in all cases. At
the level of the CPM, only the entity instances that constitute the constrained set are
identified.

EntityAssociation is a simple set membership relationship among artifacts and features.

 5

Usage is a mapping from CommonCoreObject to CommonCoreObject, useful when
constraints apply to multiple “target” entities but not to the generic “source” entity.

Trace is structurally identical to Usage, useful when the “target” entity in the current
product description depends on a “source” entity in another product description.

The following three utility classes (not shown on Figure 1) provide additional detail:
Information, an attribute of CoreProductModel and all its specializations, is a container
consisting of three attributes: a textual description, a textual documentation and
properties that represent a set of attribute-value pairs representing all domain or
object-specific attributes. process_information, an attribute of Artifact, contains
product development process parameters that may be used in a PLM environment.
Rationale, an attribute of CoreProperty, documents decision in the product
development process.

The classes described above are linked by three kinds of associations.

First, all object classes have their own separate, independent decomposition hierarchies

by attributes such as subArtifacts/subArtifactOf for the Artifact class.

Second, there are associations between:

• a Specification and the Artifact that results from it

• a Flow and its source, destination Artifacts and its input/ output Functions

• a Artifact and its Features

Third, and most importantly, four aggregations are fundamental to the CPM:

• Function, Form and Behavior aggregate into Artifact

• Function and Form aggregate into Feature

• Geometry and Material aggregate into Form

• Requirement aggregates into Specification.

The conceptual model of CPM may be used in actual applications. Specific instances of
entities must be located by means of their type and their attributes stored in and
retrieved from the properties slot of the associated Information instance. These
same two constructs, type and properties, may be used by a model compiler to create
subclasses of Artifact from the specifications in the type slot, and define attributes on
the subclasses from the properties list.

 6

2.2 Open Assembly Model
The reason to create an Open Assembly Model (OAM) [9] was to provide a standard
representation and exchange protocol for assembly and system level tolerance
information. The OAM structure was created to be extensible, and in the current UML
version (see Figure 2), it is possible to store data for tolerance representation and
propagation, representation of kinematics, and engineering analysis at the system level.
The assembly information model focuses on the information requirements for part,
features and assembly relationships. The data structure used is part of ISO 10303,
informally known as the STandard for the Exchange of Product model data (STEP) [15]
[16] [17] [18]. Information about assembly relationships and component compositions
are incorporated in the schema. The convention utilized is the same as the CPM
overview.

The class AssemblyAssociation represents the component assembly relationship of an
assembly. It is the aggregation of one or more Artifact Associations.

The assembly relationships between one or more artifacts are represented by the class
ArtifactAssociation. In most of the cases, two or more artifacts are involved in this
relationship. However, the possibility of one artifact association in the OAM is also
allowed to represent special cases. Such a case may occur when an artifact is to be fixed
in space for anchoring the entire assembly with respect to the ground. It can also occur
when kinematics information between an artifact and the ground is to be captured. Such
cases can be regarded as relationships between the ground and an artifact. For these
reasons the artifact association with one artifact associated is allowed. Please see [9] for
the detailed description of the model.

 7

Figure 2 Overview of the OAM-UML

Based on the CPM/ OAM models discussed above, the motivation was to further explore
and extend the current OAM with reasoning capabilities exploiting the ontological
representation. We also intend to experiment with various tools for modeling an
ontological assembly representation. Besides defining concepts, the benefits of such an
ontology include [19] [20]:

• Creating abstract models

• Explicating concepts, properties, relations, functions, axioms and constrains

• Creating computer interpretable formulizations so as to infer classes, instances, or
in general, reasoning through queries.

3 Language concepts and tools
In this section we first present the general concepts needed to explain the creation of the
OAM ontology. The first step of the ontology development is the translation of the UML
structure in OWL [21]. The idea of incremental modeling allows us to take advantage of
the experience and knowledge gained from the earlier deliverable versions of the model.
The key was to start with a simple implementation of a subset of the model and then
progressively evolve towards a full model.

 8

3.1 Patterns for Translation
UML was originally used in software engineering and more specifically to support the
software development. For this reason, the modeling elements offered by UML are
substantially aligned with the needs of object-oriented programming and to some extent
relational databases, which are also software. The current extensive use of UML is due to
its intuitive graphic representation.

OWL was developed to support the semantic web [10] [21] [22] [23], as an extension of
RDF [24] [25], and its core mission is to enable interoperability through semantic data
representation. There are several underlying constraints to achieve harmonization
between these two languages [26]. However particular attention is needed while
translating the classes, where no widely accepted rules for creating or evaluating
collections of classes currently exists [27] [28] [29].

In this work we adopt general repeatable solutions (termed patterns) to problems often
occurring while mapping a model from UML to OWL. We specifically define a set of
mapping solutions [30] [31] for the following:

1) problems concerning general UML properties

2) problems regarding various property constructs used to describe association
relationships

3.1.1 Property Translating Pattern

There are two main considerations while translating UML properties into OWL elements
(for example, object properties, data type properties, etc). First is the naming strategy for
UML properties and the second is the UML property type mapping to OWL elements.
First, UML properties are local to their owning classes and thus two classes may have
properties with the same name. In this case, the properties have to be renamed when they
are translated into OWL properties or OWL classes to avoid naming conflicts. Secondly,
UML properties may be of primitive data types (data type provided by UML as building
blocks) or of class types (constructs built ad hoc for a specific model). Here, if a property
is intended to be of primitive data type, corresponding OWL properties and classes have
to be created for the translation.

• UML properties into OWL properties or OWL Classes

An important consideration is to decide if UML properties should be translated into OWL
properties or OWL classes. If a UML property represents a decomposable concept, it
should be treated as an OWL class [32] instead of OWL property in the OWL model.
Properties and attributes concepts are modeled as resources and can be further identified
by their Universal Resource Identifiers (URI). If a new concept, such as an attribute type,
is later introduced to denote the attribute value in an attribute, it can be attached to the
attribute resource.

 9

• Naming strategy and General Rules

The Class-name-Property-name convention can be used to rename UML properties for
most of the cases. The class name is the name of the class that owns the property. This
class will be set as domain of the OWL property while the type of the UML property will
be set as range of the OWL property. The following rules can determine which kind of
OWL properties are used to translate UML properties:

1. If the property is of type class, use owl:ObjectProperty (property for which
the value is an individual).

2. If the property type is a primitive data type, use owl:DatatypeProperty
(property for which the value is a data literal, such as a string or a number): in this
case the values of the property are treated as atomic types and cannot be
decomposed further in conceptual modeling.

3. If the property has a multiplicity of 1, use owl:FunctionalProperty (a
property that has a unique value y for each instance x) or specify cardinality equal
to 1.

The drawback of this method is that all local properties must have unique names in an
OWL document, which may result in generating a large number of properties. However,
since there are only a handful of properties specified in CPM and OAM, this approach is
adequate in most cases.

• Using Inheritance

Sometimes, making all local UML properties to be global properties in OWL may cause
redundancy and naming conflicts. Inheritance of properties in OWL can be used to
eliminate such problems. First, a unique generic property without specifying any classes
as its domain (the class owning the property) and range (the class of the values of the
property) type will have to be created. The following rules may apply:

1. Restriction on domain and range will be further specified only when the property is
refined in a specific class description.

2. The generic property can be used in many different class descriptions. A unique
name needs to be assigned to this property and restrictions will be applied to each
single class.

The use of the inheritance property allows us to overcome the limitation of the absence of
qualified cardinality restrictions, not supported in the OWL version 1.0. Consider the
example in which there is a ClassA connected with a property to ClassB, superclass of
ClassC. To specifiy that an individual of ClassA has to be connected at least with two
individuals of ClassC, we have to create a subproperty specifically connected with
ClassC and then add the restriction on that subproperty. Moreover, to prevent the use of

 10

the superproperty connected to an individual of ClassC we can specify that the range of
that superproperty is constituted by all the elements in ClassB that are not in ClassC.

Another use of inheritance property is when, for example, there is a ClassA connected
with ClassB and ClassC through two different properties (each class is range of each
property). To specify that an individual of ClassA is connected with only one of these
two properties, we have to assert that both the two properties are subproperties of a
generic property, having as domain ClassA and having range not specified, and then add
the cardinality restriction on this generic property.

3.1.2 Association Pattern

There are many different types of associations that can be described in UML, such as
directed associations, binary associations, association classes, and so on. OWL also
provides various property constructs to describe relationships. There are similarities and
differences between these constructs. Both UML and OWL allow users to apply
cardinality constraints, refinement, and sub-setting to associations and properties.
However, UML supports n-ary relations (relations linking an individual to more than one
individual or value), while OWL supports only binary relations. Besides, UML supports
aggregation and composition relations between classes, while OWL supports transitive,
symmetric, and functional property definitions. Association patterns are used to translate
these UML association properties into OWL properties.

• Simple directed association

A simple directed association can be translated as an owl:ObjectProperty. The
participating classes will be the domain and range of the associated property.

• Classified binary association

Associations in UML have various combinations of characteristics. For example, an
association can be unnamed, shared, binary, and navigable. In mathematics, a binary
relation (or a dyadic relation) is an arbitrary association of elements of one set with
elements of another set.

A formal definition of a binary relation could be the following: A binary relation R is
usually defined as an ordered triple (X, Y, G) where X and Y are arbitrary sets (or classes), and
G is a subset of the Cartesian product X × Y. The sets X and Y are called the domain and range,
respectively, of the relation, and G is called its graph.

Analyzing this definition from the OWL point of view, it is easy to understand that X and
Y are simply two classes of the ontology (e.g., Assembly and ArtifactAssociation) and
that G is a property between them (e.g., Assembly2ArtifactAssociation). These properties
are not shared between classes, unlike the ones previously presented.

In order to translate these binary associations into OWL, a taxonomy of binary
associations is first created. The root of this taxonomy will be binaryAssocation.

 11

The subproperties of binaryAssocation include
binaryUnnamedAssociation, binaryNamedAssociation, and
associationClass. Since OWL properties are directional, for a given UML binary
association a pair of mutually inverse properties is created. For example, two mutually
inversed properties are created as subproperties of binaryUnnamedAssociation
property. BUA_1 and BUA_1_INV are created as a pair of mutually inverse OWL
ObjectProperties for further extension. The hasOutputFlow and
isDestinationOf properties can thus be organized as subproperties of BUA_1 and
BUA_1_INV respectively. This pair of properties can be used to describe the association
between Artifact and Flow (see section 2). Some ontology editors, such as Protégé-
OWL, can take advantage of this arrangement and automatically generate the
corresponding inverse subproperties.

• Shared aggregation association

The significance of the shared aggregation1 associations in UML is that the parts can be
shared by many containers. Such semantics cannot directly be captured by OWL
constructs. Similar to the classified binary association pattern, the root of the aggregation
properties taxonomy will be first created after which a pair of directional subproperties of
this root will capture the aggregation.

• Self-referenced weak composition association

The self-referenced weak composition association pattern is used in CPM to capture:
decomposition hierarchies, part-of relationship, and containment hierarchies. A part-of
relation can be defined as a transitive, irreflexive, and asymmetric relation. OWL
currently only supports the transitive property. Without irreflexive construct, it is not
possible for one to state that a part cannot be part of itself. Without asymmetric construct,
two parts may contain each other. These unsupported properties (at the time of this
report) will be available in OWL 1.1. As already mentioned in the UML version of the
model, core classes are characterized by reflexive relationships but in OWL there are no
primitives to represent such relationships. Hence the structure has to be reproduced in the
ontology using a composite set of properties grouped under the super property
composition (Figure 3 Protégé composition).

1 In some old UML documents, a shared aggregation is also called weak composition as opposed to the black diamond (strong)
composition in which the containing component is responsible for the storage and creation of the contained components. Components
in weak composition can be stored by more than one container.

 12

Figure 3 Protégé composition

As can be seen from the Figure 3 the class composition has two subproperties: hasPart
and partOf, each inverse of the other. Considering hasPart it can be noticed that it
further has subproperties like hasPart_direct.

Note that the second properties have subproperties too. The subproperties of this class
differ from the “not” direct properties because they are not transitive. For further
explanation of the hierarchy let’s consider a description of a bicycle and its
decomposition into elements:

 Bicycles have parts Wheel, DriveTrain

 Wheels have parts Rim, Tire

 DriveTrains have parts Gear, Chain

For expressing the part-whole relations [33] between individuals, we use hasValue
with partOf_direct and the relations between classes using the restrictions
someValuesFrom with partOf_direct. Following are some useful conclusions
drawn from the above example: first of all the semantics necessary for the correct
representation for bicycle parts are not completely represented by existential restrictions
for e.g. owl:someValuesFrom. Considering the Chain class, we can deduce that a
chain is part of at least a drive train, but we cannot deduce that a particular chain cannot
be owned by more then one drive train. Adding a cardinality restriction (e.g.,
maxCardinality 1) on the property partOf to the definition of chain will not solve the
problem either. A chain is also a part of the bicycle where the drive train is a part. For

 13

this reason OWL-DL does not allow transitive properties to have any cardinality
restrictions. The creation of the property partOf_directly is useful for the
introduction of restrictions in the definitions of these classes. A single chain cannot be a
direct part of more then one drive train and a drive train cannot be part of more then a
bicycle, so in these cases a cardinality restriction specified on the property
partOf_directly is needed. Specifying cardinality constraints helps to create a
precise representation but there is a trade off between model accuracy and computational
time needed by the Reasoner.

• Association class pattern

There are several approaches for translating association classes into OWL classes. Let’s
consider for example the following UML structure (Figure 4).

Figure 4 UML Property Class

In OWL it is not possible to represent this structure directly because there is no built-in
pattern with this meaning. However, it is possible to decompose the UML structure into
simple elements and later translate it in OWL to recreate the original meaning (Figure 5).

Figure 5 A Property Class connecting two different Object Classes

For the translation of UML association classes, in OWL there are two feasible solutions:
the first requires the creation of a set of four different properties between classes with
specific cardinality restrictions (Figure 6).

Figure 6 Property pattern for two Object Classes

This solution includes two different object classes, while in CPM and OAM this case
never occurs. So we create an alternate second solution (Figure 7).

Class A
Class B

Class B

Class A

Class C

INVERSEINVERSE

=1
Class B Class C Class A

max 1

 14

Figure 7 First part of the translation of Property Classes

The second solution is used with the specification of certain constraints. First of all (as
seen from the Figure 7) a cardinality constraint has to be set and it is mandatory to
preserve the binary relation between the two classes. This means that two instances of
class B can be linked only with one instance of class A. In OWL, it is not possible to
explicitly express this constraint but alternatively we declare that if the same two
instances of class B are linked with two different instances of class A (A1 and A2) they
have to be equal (Figure 8).

Figure 8 Second part of the translation of Property Classes

• Cardinality Pattern

All the above discussed patterns have to deal with the cardinality. By default, the
cardinality restrictions for all properties in a model are set to be zero to many.
Sometimes, it is hard to determine the cardinality of a relationship at an early stage of the
design. Unlike UML, OWL allows redefining properties independently from the classes
so we can specify cardinalities after the classes are defined. This provides more freedom
to the model creators. However, caution has to be taken with the description-logic based
approach since the changed cardinality may destroy the parent-child relations between
the classes. Further examples will be presented later, when we discuss the strategies for
using the CPM OWL model for various design phases.

3.2 Modeling and Reasoning Tools
The Assembly ontology is created starting from the core classes using the DL
(Description Logic) sublanguage of OWL and Protégé-OWL to edit it. The preliminary
modifications introduced in the model were tracked for later changes due to modeling
necessities. A partial demo was created instantiating the model after every change or
modification. We verified each branch of the ontology using Protégé-OWL, as it is able
to run the reasoning simulation of the model. The Protégé-OWL editor [34] [35] is an
extension of Protégé that supports OWL. Snapshots of Protégé Subclass explorer

min 2
Class A Class B

A1

B1

B2

A2

B1

B2

A1=A2

http://protege.stanford.edu/plugins/owl/architecture.html�

 15

(Snapshot A1), Property browser (Snapshot A2) and Class browser (Snapshot A3) are
presented in the Appendix.

The Protégé-OWL editor enables users to:

• Load and save OWL and RDF ontologies.

• Edit and visualize classes, properties and SWRL (Semantic Web Rule
Language) rules.

• Define logical class characteristics as OWL expressions.

• Execute reasoners such as description logic classifiers [36] [37].

• Edit OWL individuals.

Although time consuming, this incremental approach (discussed earlier) of model
development has allowed time for testing, and, subsequently improved the model.

Description logic reasoning are done using RACER [38], a DL reasoner. This tool allows
consistency checking and to infer class/instances.

Rule-based reasoning is possible using SWRL [39] [40] rules. An appropriate plug-in
was available in Protégé-OWL (SWRL Tab). A Jess Bridge [41] is used to translate both
the rules and the ontology into the Jess Engine. Once executed, the results can be
imported again into the ontology in OWL through the Jess Bridge.

4 OWL Model of the Assembly
One of the main benefits using an ontology is the possibility to share and reuse
knowledge [42] [43] [44]. When importing one ontology from another, all the classes,
properties and individual definitions that are part of the imported ontology become
available for use and furthermore, we can add components or restrictions without
affecting the imported ontology. In this research, since OAM is an extension of the CPM,
we can first build the CPM ontology and then import it into the OAM ontology. With
OAM, all the considerations about the CPM are still valid. Coherent with our aim to
create a model that is extensible by itself, we choose to create a vertical hierarchy so that
all the classes of the extensions will be subclasses of the main model classes. Section 4.1
presents the translation of the CPM to OWL and Section 4.2 subsequently presents the
OAM translation. The reasoning in the developed OAM-OWL Assembly Model is
presented in Section 4.3.

4.1 Translation of the CPM to OWL
The structure of the ontology begins from the class: CommonCoreEntity. This class
represents real objects and relationships or associations between them.

http://www.w3.org/Submission/SWRL/�

 16

The common attributes type, name, and information for all CPM classes are
defined for the CommonCoreEntity class. The first two are Datatypeproperties
while the last is an ObjectProperty. The attribute type, set 0 or 1, is useful to
overcome the OWL drawback of not being able to set a class as abstract.

An abstract class is a class for which all instances are instances of a subclass. Such
classes normally are used as base classes in inheritance hierarchies. In our case, abstract
classes constitute the top few levels of the hierarchy. To determine whether a class is
abstract or concrete we control the usage of type by manually setting the cardinality to
zero for CommonCoreEntity’s abstract classes and maximum cardinality back to one
for concrete subclasses.

The name attribute can be completely ignored in the OWL document because rdfs:label
and the URI for each resource can be used to achieve the same identification purpose.
However, to preserve the semantics of CPM, the corresponding property
commonCoreEntityName is created.

The information class is set like a class and not a DatatypeProperty (attributes)
to allow users to define them with flexibility, for example to connect every object to any
number of information. It has description, documentation, and properties
attributes. The description and documentation can be represented by OWL
DatatypeProperties for their values are the URI pointing to the referenced
documents.

The properties attribute is a set of attribute-value pairs stored as strings representing
all domain or object-specific attributes. It should be noted that the attribute-value pair
may be extended to be attribute-type-value pair at the detail design phase. Unlike the
other two attributes which are defined as DatatypeProperties, the set concept
defined in CPM report has to be preserved for all these string values. To achieve this,
properties and its attributes are treated as OWL classes.

The two subclasses of CommonCoreEntity are CommonCoreObject and
CommonCoreRelationship. They are represented respectively in UML as two main
groups of object classes and association classes. For this reason they have type set to 0
(because they are on a high level of the hierarchy) and they are connected with each other
with the ObjectProperty property2class and its inverse, following the binary
pattern of the association classes.

CommonCoreObject is the parent of five subclasses of which three are concrete classes
(with type 1) and two are abstract. The former are Behavior, Requirement and
Specification. They have the same type of connections as in UML, for example the
Requirement and Specification will be joined by a relationship, and Behavior will have
a self-reference relationship with the composition pattern. In this way the super-property
Composition is divided into the subproperties partOf and hasPart, composed of
specific properties that connect Behavior with itself (both of them are transitive).

 17

Similarly, as subclasses of partOf_direct and hasPart_direct we have
partOfBehavior_direct and behaviorHasPart_direct.

Two other subclasses of CommonCoreObjet are CoreEntity and CoreProperty. These
are important classes because they are particularly involved in the construction of the
OAM ontology and because they are connected with subclasses of
CommonCoreRelationship (see Figure 1). CoreEntity has a binary relationship with
EntityAssociation (coreEntity2entityAssociation) while CoreProperty has
one with Constraint (coreProperty2Constraint).

Rationale is an attribute of CoreProperty with specializations (Flow, Form, Function,
Geometry, and Material) and connected to the Requirement through a binary
ObjectProperty.

The rest of the model is developed following the patterns previously described, paying
attention to the meaning of the UML relationships and their cardinalities. However, it is
necessary to underline the role of the classes Artifact and Feature as they are the main
classes of the OAM OWL.

Further, we decided to preserve the UML interpretation of the relationship partOf
between Artifact and itself, so as to describe the composition of an assembly at the CPM
level. This information can be useful for the core description of an artifact because some
characteristics of an assembly can be influenced by the characteristics of its constituent
parts (for example the function of a part partakes in the function of the assembly).

4.2 Translation of OAM to OWL
Starting from the CPM-OWL model (discussed earlier) a relative OAM ontology is built.
In OAM all the classes and properties presented in section 4.1 are valid. In the following
section we further discuss the translation of the OAM from UML to OWL.

4.2.1 Relationships between artifacts

First and foremost, for the translation it is important to represent the relationships
between artifacts. Consider the following: artifact A is composed by artifact B, artifact C
and artifact D as in Figure 9.

Figure 9 A is composed by B, C and D

 18

There are different levels of decomposition for this product. Now consider artifact B
composed by artifact E and artifact F (Figure 10).

Figure 10 B is an assembly too

Here, we can have different relationships between products, for example artifact A can be
composed by integrating artifacts B, C and D or it can be created by the relationship of
artifact C with B and artifact C with D (Figure 11) considering B and D not connected.

Figure 11 B and D are not directly connected

In the above example, we have to distinguish between artifacts composed by other
artifacts (A and B) and artifacts that represent the leaf nodes of the composition (C, D, E
and F). We classify them into Assembly and Part respectively (as subclasses of
Artifact). For the Part class we associate the necessary and sufficient conditions such
that a leaf node has cardinality 0 with the property artifactHasPart_direct that
is inherited but not required. In this way, we define a part like an artifact without
subassemblies, so with neither the direct nor the indirect properties
artifactHasPart.

Contrarily, considering the necessary conditions of Assembly, there is a constraint to
have at least two artifacts connected through the property
artifactHasPart_direct (inherited from Artifact and hence not repeated for
Assembly). By defining Assembly and Part like partitions of the class Artifact, an
Artifact composed by other artifacts will be inferred to be an assembly. Unfortunately it
is impossible to infer the opposite, which means that we have no way to assert that an
artifact without direct artifacts is a part. This is one of the biggest limitations of
ontologies in general. The logic is as follows: not relating an artifact with other
subartifacts does not mean that this artifact is without subartifacts, it just means that at the
moment we do not know if it will be composed by other parts. Although, it does have the
relationship artifactHasPart_direct, but we do not know to which subartifacts
it is connected.

 19

While populating the ontology the user will choose a level by level connection of the
artifacts. This implies that he/she will decide on the link between them to instantiate the
direct properties (artifactHasPart_direct or partOfArtifact_direct).
Here, there could be three choices while implementing the logic of the ontology, in
particular choosing the connection with indirect properties. Let us take the example in
which assembly A is composed by assembly B and assembly C, and assembly B is made
by part 1 and part 2 and assembly C by assembly D and part 3, assembly D by part 4 and
part 5 (this is the composition of the direct properties shown in Figure 12).

Figure 12 Example of an assembly composition

The three different choices of inferred connection to the assembly A through the indirect
property artifactHasPart are:

 part 1, part 2, part 3, part 4, part 5, assembly B, assembly C and assembly D: all
the levels

 part 1, part 2, part 3, part 4 and part 5: only parts at all levels

 part 1, part 2, part 3 and assembly D: the second level of the decomposition

We choose the second solution because it is less confusing than the first and more
detailed than the third. So, if we want to see the detailed composition of the assembly it is
sufficient to check the direct property of each subassembly and if we want to know the
parts that compose the assembly we can check the indirect properties. Moreover, since
the user has to choose only the direct property, we have to decide to allow or not, the
possibility to create an assembly with two subassemblies without specifying their
constituent parts. Here, the question arises as to if there is any meaning to define an
assembly without describing the parts by which it is composed? Or does an assembly
exist without parts?

Although from the definition the lowest level of the tree has to be represented by parts,
we choose to define an assembly even without specifying the constituent parts. The
reason is as follows: during the concept phase of the product life cycle we have to allow
the representation of an assembly without specifying its composition. For example we

assembly A

assembly C assembly B

assembly D part 3part 1 part 2

part 4 part 5

 20

may represent a car simply made from an engine and 4 wheels, without specifying from
which parts the engine and the wheels are composed.

So, in this ontology, there are two approaches: the bottom up, useful when we want to
structure some data with complete information, and the top down, necessary in cases
when we do not know the exact composition of the assembly but we have just an idea of
its organization.

After choosing the rules to represent relationships between an assembly and its
constituents, the second step is the representation of relationships between these
constituents. In the UML model, we have two classes for representing the structure of the
assembly: ArtifactAssociation, which represents the relationship between subassemblies
and AssemblyAssociation, which is the collection of the elements of
ArtifactAssociation.

Figure 13 The assembly representation in OWL

In the ontology the class ArtifactAssociation is created with two different
ObjectProperties connected to it: the first one
(artifactAssociation2Part) relates the constituents of the assembly and is a
specification of the binary association entityAssociation2CoreEntity while
the second one (artifactAssociation2Assembly) is the property that connects
ArtifactAssociation to the Assembly.

In this way the UML class AssemblyAssociation is replaced by the property that directly
connects the elements of ArtifactAssociation with the assembly. For example, if
assembly A is composed by part 1 and part 2, there will be an instance of
ArtifactAssociation that connects part 1 and part 2 through the property
artifactAssociation2Part (ArtifactAssociation has to be connected with at
least two instances of Parts or Assembly). The same instance of ArtifactAssociation
will be connected with the assembly A through the property
artifactAssociation2Assembly (assembly A has to be connected with at least
one instance of ArtifactAssociation).

Part 1

Assembly 1

Assembly 2 Assembly 3

ArtifactAssociation α ArtifactAssociation α

AssemblyAssociation: α, β

 21

4.2.2 Relationships between features

Although the information regarding the assembly composition is useful to give an
overview of an artifact, we need to detail the representation to understand in which way
parts are connected together and the positions and profiles interested in the assembly.

In the CPM we have already represented the relationship between an artifact and its
features through the ObjectProperty artifactHasFeature. Our aim in OAM
is to represent that a feature, although still remaining characteristic of a part, will meet
another feature belonging to another part to form the assembly. We term this particular
feature OAMFeature, subclass of Feature. We include in the OAM the possibility to
connect these OAM features together, and so as to connect the parts that have these
features and finally to create the assembly in the ontology.

The class that represents the link between two or more features is termed
AssemblyFeatureAssociation (AFA) (subclass of EntityAssociation). It is connected to
the features through the property AFA2Feature following the property class pattern.
Once this property is defined, we give a formal definition (necessary and sufficient
condition) to the OAMFeature as a feature with at least one connection with the class
AssemblyFeatureAssociation.

Like in the UML model, it is useful to have a direct connection between the class that
represents the association between features (AFA) and the one that represents the link
between the artifacts that own these features (ArtifactAssociation). For this, we use an
ObjectProperty that is a binary property but not a subproperty of
property2class, since it connects what in UML were two property classes. This
property is called artifactAssociation2AssemblyFeatureAssociation
(its inverse is called
assemblyFeatureAssociation2ArtifactAssociation). Logically, an
element of AssemblyFeatureAssociation can participate only in one
ArtifactAssociation while an instance of ArtifactAssociation can be represented by one
or more associations of features.

4.2.3 Pairs and Relations

So far, we can describe an assembly through the parts and the features that are involved
in it. Here we need to detail the description of an assembly with a section relative to pairs
existing between features. Besides we also need to know if they are movable or fixed, the
kind of constraints between them and so on.

In the ontology we choose, like in the UML version, to leave a single class that reunites
this information: AssemblyFeatureAssociationRepresentation (or AFAR). This is still
an EntityAssociation because it represents the relationship between two or more
features. It will have the same restrictions developed for the property class pattern and
will be connected with the AFA to which it refers: the AFAR will link together the same
features that are involved in the AFA. Moreover, the AFA has to have just one AFAR

 22

linked with it, since AFAR is by itself the class that clusters all the information about the
connection. This information will be represented through the same classes as in the UML
model: ParametricAssemblyConstraint, KinematicPair and KinematicPath. They are
all again subclasses of EntityAssociation, they have the same children classes as in the
UML version and additionally they refer to the same features involved in the pair.

The properties connecting AFAR to these three classes are aggregations and they are
collected under a unique property called AFAR_details. In the ontology an
association between features can have utmost one path and one pair while the number of
constraints is flexible.

Consider the class KinematicPair which represents the kinematic constraints between
two adjacent features at a joint: to be defined it needs to be connected with the classes
PairRange, PairValue and PairFrame. PairRange specifies the allowable
configuration range of the two features in the form of upper and lower bounds.
PairValue specifies the current configuration (value) of the two links between the two
bounds. PairFrame represents a coordinate system attached to a feature. A kinematic
pair needs two coordinate systems to describe its kinematic behaviour as to where they
will be attached to the two relevant features. For the pairs, the properties involved are
grouped into one property that connects the pair with its range, value and frames, and
another property is used to connect these frames to the reference features.

The class KinematicPath provides the description of kinematic motion. It is the
aggregation of path elements along which the motion is to take place. A PathElement
can specify different types of paths. Since the KinematicPath is composed of a set of
PathElements, it can describe a composite path as well as a simple path. To connect the
PathElements a composite class PathElementConnection is used to order the elements
by defining the precedence. For this reason there exist the properties
isNextElementOf and isPreviousElementOf.

PathElement is a path segment with two PathNodes, which represent the "from" node
and "to" node, respectively. Two different properties are established going from the
PathElement to the PathNodes, both with cardinality 1. PathNode is used to define the
start and end locations of a path. At each PathNode, the position and rotation of a frame
along the path need to be defined.

4.2.4 Tolerances

Like in the UML OAM, we introduce tolerances in the model. We want to allow for
design tolerances from the early stages of the product lifecycle, to combine the tolerances
definition with the assembly structure [45]. A proactive approach could be useful for an
early tolerance synthesis and analysis when the design is incomplete.

The class Tolerance has the same subclass structure of the UML version, i.e., geometric
and dimensional tolerance. Tolerance is connected with OAMFeature to represent
tolerances important in the pairs of parts/subassemblies. The choice of tolerances is

 23

particularly difficult when different parts have to be combined together to obtain a
specific functionality.

DimensionalTolerance is linked to the class Size because it controls the variability of
linear dimensions. Size is a subclass of Attribute, so it is connected with all the
CommonCoreEntities, including features. The GeometricTolerance defines the
allowable variation for the form, size of individual features, allowable variation in
orientation and location between features. For this reason, this class is connected to
Geometry (a subclass of the CPM class CoreProperty connected with the form of an
artifact or of a feature). Of the geometric tolerances we can underline important ones:
LocationTolerance, OrientationTolerance and RunoutTolerance. Unlike other
tolerances they are also linked with the class Datum. This class represents the geometries
that are chosen like a reference for the tolerance. So here, Datum is a subclass of
Geometry and it is connected with DatumFeature that is a subclass of OAMFeature.
The individuality of the datum is that it can be described like a particular geometry, for
example like a point, a curve or a plane. Now that we already have these elements in the
ontology, we exploit the potentiality of OWL to build a class that is a subclass of
different classes (multiple inheritance). For example, the class CurveDatum will not
only be a subclass of Datum but also a subclass of Curve. In this way it inherits the
properties and the characteristics of both Curve and Datum. The practical way to realize
this is to define the two conditions in the specification of the class.

4.2.5 Usage Patterns

The next task is to improve the model since it requires redundant specification of the
subassemblies, parts, and artifact associations used more than once. For example, if a
wheel subassembly in a car is comprised of a tire and a hub, this subassembly must be
repeated at least two times in the current model, so that each wheel subassembly could be
attached to the correct axle. Otherwise, there is no way to distinguish the back wheels
from the front ones.

This leads to a number of problems:

• Consistency maintenance is difficult when a reused subassembly is changed, and
requires propagation to all its usages. For example, there is no central class to make a
change to the parts of wheels, and then propagate this change to all assemblies using
wheels.

• Finding all the usages of a part or subassembly is unreliable. For example, the only
information available about location of wheels usage is in the names “FrontWheel”
and “BackWheel,” which may change over time.

Hence it is important to find a central class that represents the elements to be used more
than once and then to create some classes to realize the usages of these elements. This
problem concerns not only the elements of the assembly but also the relationships in this
assembly.

 24

The general pattern is that for any element of an assembly, we define a corresponding
usage element that refers to the original element and the context of its use.

The elements that can be repeated (used more than once) are Artifact, OAMfeature,
ArtifactAssociation and AssemblyFeatureAssociation: these are the Reusable elements
(Figure 14). For each one of them we define a corresponding class Usage, so in the model
we have the following classes: ArtifactUsage, AssemblyFeatureUsage,
ArtifactAssociationUsage and AssemblyFeatureAssociationUsage. Every concept that
is to be repeated will also have a particular Context. This means that Artifact and
ArtifactAssociation will be repeated within an Assembly (the context of these classes)
while in the context of ArtifactUsage we can find several OAMfeatures and
AssemblyFeatureAssociations.

ReusableElement Usage Context

Artifact ArtifactUsage Assembly

AssemblyFeature AssemblyFeatureUsage ArtifactUsage

ArtifactAssociation ArtifactAssociationUsage Assembly

AssemblyFeatureAssociation AssemblyFeatureAssociationUsage ArtifactUsage

 Figure 14 Usage pattern

The property uses will connect every Usage to its corresponding ReusableElement.
The cardinality will be equal to 1 because each repeated element can belong to only one
element. The inverse of this property is isUsedBy and has free cardinality because
every element can either follow the usage pattern or not and can have more than one
repetition. Usage is connected with the context through the property used_in. The
cardinality 1 on this property constrains the Usage to have not only its referring element
but also its context. The property hasUsage is used to link contexts with usages and it
is declared as the inverse of used_in.

Let us take into consideration a composition of an assembly formed by repeated parts or
subassemblies. This assembly will be connected through the hasUsage property with
the ArtifactUsage that represent the repetitions and with the ArtifactAssociationUsage
that represents the repeated association between these repetitions. Every ArtifactUsage
will be referred to its corresponding element through the property uses that explains
which element is repeated. The same holds for the ArtifactAssociationUsage.

used_in uses

1 0..* 1 0..*
ReusableElement Usage Context

 25

In the example (see Figure 15) of the car we will have a representation similar to the
above discussion.

Figure 15 Example of the usage pattern

The most important element in representing this usage pattern is its implementation and
its advantages in using an ontology instead of a UML model. In fact in OWL we can
create a class that is a subclass of more than one class so that it inherits the properties and
the characteristic of every parent class. In the same way, one instance can instantiate
more than one class, taking all the properties of these classes. The coherence control will
enable us to verify the correctness of such assertions. These OWL characteristics are
exploited in the usage pattern because the model setting will be the same for both cases
when we do or do not use the usage pattern. The instantiation of the model will follow the
steps for which we define the Artifacts:

 we can either directly connect the Artifacts through the hasPart_direct,
isPartOf_direct when we don't need to use the usage pattern, or

 we can connect them with their repetition elements (ArtifactUsage) if we want to
use the usage pattern.

This is allowed because an Artifact will have the possibility to have subassemblies or to
be a subassembly and at the same time to belong to the ReusableElement class having
property isUsedBy. If we want to choose to follow the usage pattern, we have to

 26

employ some SWRL rules. Without them, for example, the ArtifactAssociation will not
be connected to any Artifact but only with the ArtifactAssociationUsage. This will be
presented as an inconsistency since there is a restriction that an ArtifactAssociation has
to link at least two Artifacts. For this reason we have built some rules (explained in the
following section) to automatically compile the field
artifactAssociation2Artifact property. The same kind of reasoning will be
followed for each usage concept.

5 Reasoning with OWL Assembly Model
Classes, properties and restrictions are the elements that OWL offers for the creation of
an ontology but these elements are not sufficient to capitalize the real potentials of an
ontology, i.e., the reasoning capabilities. In this ontology we can execute two different
kinds of reasoning, the description logic reasoning using RACER and rule-based
reasoning using SWRL and Jess.

5.1 Description Logic Reasoning
Description logic reasoning is done using RACER, a software that works like a reasoner.
RACER practically exploits all the restrictions and the definitions of the classes to infer
classes and instances. If for example, we define a Class A and we specify a necessary and
sufficient restriction on its properties (i.e., a pizza is defined like a food that has a base
and some toppings) and we separately define a Class C that has its properties specified
(Margerita pizza is a food that has a base and has, as toppings, cheese and tomatoes) the
reasoner can infer that Class C is a subclass of Class A (i.e., Margerita is a pizza with
additional characteristics). In the same way the reasoner can infer instances. By always
using the necessary and sufficient conditions RACER can associate an instance to a
different class if it satisfies these conditions. Taking the previous example, it means that
if we define Margerita as a pizza that has only cheese and tomatoes as toppings and we
create an instance of Pizza that has only these two ingredients, the reasoner will infer that
this instance belongs to the class Margerita. The role of the reasoner is also to check the
consistency of the ontology by verifying the necessary conditions and the tree of the
classes.

5.2 Rule-based Reasoning
Since the description logic reasoning cannot be applied to properties, we chose to apply
some SWRL rules (interpreting the ontology through a Jess Bridge) to improve the
reasoning capability of the ontology. Once the Jess Engine is run, it returns the new
inferred information to the ontology. In the subsequent paragraphs we will first explain
the rules in general, and then discuss every specific rule. There are 4 kinds of rules that
are useful both to associate instances to new classes and to create properties between
instances.

 27

5.2.1 Property rules

Property rules are the most common in the ontology, they are used to create new links
between instances once some properties are satisfied (Figure 16). They are logic rules and
they incorporate the meaning into the ontology. They are useful because, when defining
the ontology, we do not need to specify every property: doing so we can avoid mistakes
and thus input a lighter ontology. For example, once we have the structure of an
Assembly and the ArtifactAssociations between its subassembly, the Jess Engine can
link these ArtifactAssociations to the Assembly. In the example of Figure 16 the
Assembly 1 is composed by Part 1 and Part 2 (property partOfArtifact_direct),
these last are connected through the ArtifactAssociation α (property
artifactAssociation2Part): the Jess Engine infers the connection between
Assembly 1 and ArtifactAssociation α (property
artifactAssociation2Assembly).

Figure 16 Property rules

5.2.2 Association rules

As mentioned earlier in this report (section 3.1.2), we have decided to uniquely translate
the property classes and the relationships they specify between two elements of the same
object class. The property class will become a normal class in the ontology and it will be
connected to the object class with a binary property. To be binary, first of all we apply a
minimum cardinality 2, and then we specify that if two different elements of the property
class are connected to the same elements of the object class, then these two elements are
the same. In SWRL it is translated with the embedded language structure: sameAs.

5.2.3 PartOf rules

These rules (see Figure 17) are needed to infer the indirect properties (discussed earlier in
the structure of Assembly). The user only specifies the properties
partOfArtifact_direct while the partOfArtifact will be built through
SWRL rules.

Assembly 1

ArtifactAssociation α Part 1 Part 2

 28

Figure 17 PartOf rule

5.2.4 Restrict rules

They are useful to populate the classes of the kind not-allowed. We have to create these
classes because in OWL, and in particular in Protègè, there is no way to infer that some
impossible properties or instances created by the user have to be cancelled from the
ontology. The only way to realize this is to insert the user’s input without meaning into
new classes. Take for example the case in which an assembly is composed by itself (i.e.,
assembly 2 is composed by assembly 1 that is in turn composed by assembly 2) as can be
seen from Figure 18.

Figure 18 Example of a not allowed assembly

Assembly 2

Assembly 1 Part 3

Part 2 Part 1

Assembly 2

Part 2 Part 1 Part 3

partOfArtifact_direct

partOfArtifact

Assembly 2

Assembly 1

Assembly 2

 29

Some traditional SWRL rules or some OWL definitions are useless because they can only
specify some characteristics of the classes but not of the instances. In the example, both
the assembly 2 and 1 are instances of the same class, so no definitions can be applied to
the relationships between them. To solve such problems we create the not-allowed
classes and we put such structures in them through SWRL rules.

5.3 Rule Analysis and Discussion
In this section we examine the rules in the Ontology. Note that we sometimes may need
to present some of them together, because they are useful only if they are run together.
The rules will be presented in tables with the antecedent in one column and the
consequent in the other (similar to the structure if-then in other languages). The first
group of rules we analyze is useful to create the relationship between an assembly and the
ArtifactAssociations it is composed of.

Table 1 presents the ArtifactAssociation rules. We need four different rules because an
ArtifactAssociation can connect both parts and assemblies. As already mentioned, we
allow this because usually in the first stage of the product lifecycle we need to describe
an assembly in general, without considering the individual parts by which it is composed.
However in the manufacturing phase, we specifically need to describe the assembly. We
want to allow both of these situations, but the drawback is the lack of information as to
whether or not there will be a complete description of the subassemblies.

Rule Antecedent Consequent

1

artifactHasPart_direct(?x, ?y)
Part(?y)
artifactHasPart(?x, ?z)
Part(?z)
differentFrom(?y, ?z)
part2ArtifactAssociation(?y, ?a)
part2ArtifactAssociation(?z, ?a)

Assembly2ArtifactAssociation(?x, ?a)

2

artifactHasPart_direct(?x, ?y)
Assembly(?y)
artifactHasPart_direct(?x, ?z)
Assembly(?z)
differentFrom(?y, ?z)
artifactHasPart(?y, ?q)
Part(?q)
artifactHasPart(?z, ?r)
Part(?r)
differentFrom(?q, ?r)
part2ArtifactAssociation(?q, ?a)
part2ArtifactAssociation(?r, ?a)

Assembly2ArtifactAssociation(?x, ?a)

3

artifactHasPart_direct(?x, ?y)
Assembly(?y)
artifactHasPart_direct(?x, ?z)
Assembly(?x)
part2ArtifactAssociation(?y, ?a)
part2ArtifactAssociation(?z, ?a)

Assembly2ArtifactAssociation(?x, ?a)

4 artifactHasPart_direct(?x, ?y) Assembly2ArtifactAssociation(?x, ?a)

 30

Assembly(?y)
artifactHasPart_direct(?x, ?z)
Part(?z)
part2ArtifactAssociation(?y, ?a)
part2ArtifactAssociation(?z, ?a)

Table 1 Artifact Association rules

The first rule is applied when the description of the assembly is complete (the
AssemblyAssociation connects two or more Parts) and the assembly has at least one
subassembly that is a part. The antecedent of the rule indicates that one Part is directly
part of the Assembly while the other one is indirectly connected to the Assembly.

Rule 2 is applied when the description is detailed but the ArtifactAssociation is between
Parts that are not directly subassemblies of the Assembly. This means that the Assembly
will be composed by other subassemblies that will have Parts that are connected
together. We ignore the levels here, because in the antecedent we explore the indirect
property to search these parts in the subassemblies.

Rule 3 is applied when the description is not detailed so the Assembly is composed by
two or more subassemblies connected together. Rule 4 is similar to the third but is useful
in the situations when we want to describe an assembly made by a part and a
subassembly.

The highlight of this ontology is that, given the components of the Assembly, we are able
to connect the AssemblyAssociation to the Assembly. The drawback now is that we are
unable to do the opposite, i.e., to reconstruct the structure of the Assembly having the
associations by which it is composed. One solution here is to first input in the rule the
property between Assembly and ArtifactAssociations and second the subassemblies that
are connected through these associations. Further we do not know at which level of the
assembly structure are the subassemblies. Let us take the example of an Assembly A
composed by subassemblies B and C that are made by Part 1, 2, 3 and 4 respectively; the
ArtifactAssociation exists between Part 2 and Part 3. In this case a rule like “if a part is
part of an assembly and another part is partof another assembly, then connect these
assemblies together to form the superassembly” will hold good, but the problem occurs
when the superassembly is composed by three levels. If Assembly A is composed by
subassemblies B and C that are made respectively by subassemblies D, E, F and G each
having two Parts (from 1 to 8) the rule would infer that the Assembly A is defined by
Assemblies D and F , without considering the upper level. We then need a rule to
recognize the highest level in the hierarchy and then connect the Assemblies in this level
with the superassembly through artifactPartOf_direct. With the inability to
build complex constructs (like OR, NOT or XOR) with SWRL rules, these kind of
recognitions are currently impossible. The alternate step is to automatically create the
association at the features level.

Table 2 presents the AssemblyFeatureAssociation rules. The first rule is applied when
we have a complete description of an artifact, i.e., when the ArtifactAssociation
describes the relationship between two Parts. If these Parts have two Features that are

 31

connected with an AssemblyFeatureAssociation, then this association will be linked to
the ArtifactAssociation between the Parts.

Rule Antecedent Consequent

1

artifactHasFeature(?x,?f)
artifactHasFeature(?y, ?g)
AFA2Feature(?w, ?f)
AFA2Feature(?w, ?g)
artifactAssociation2Part(?z, ?y)
artifactAssociation2Part(?z, ?x)
differentFrom(?x, ?y)
differentFrom(?f, ?g)

AssemblyFeatureAssociation2
ArtifactAssociation(?w, ?z)

2

artifactHasFeature(?x, ?f)
artifactHasFeature(?y, ?g)
AFA2Feature(?w, ?f)
AFA2Feature(?w, ?g)
artifactAssociation2Part(?z, ?e)
artifactAssociation2Part(?z, ?d)
artifactHasPart(?d, ?x)
Part(?x)
Assembly(?d)
artifactHasPart(?e, ?y)
Part(?y)
Assembly(?e)
differentFrom(?e, ?d)
differentFrom(?x, ?y)
differentFrom(?f, ?g)

AssemblyFeatureAssociation2
ArtifactAssociation(?w,?z)

3

Feature(?f)
Feature(?g)
artifactHasFeature(?x, ?f)
artifactHasFeature(?y, ?g)
ArtifactAssociation(?z)
AssemblyFeatureAssociation(?w)
AFA2Feature(?w, ?f)
AFA2Feature(?w, ?g)
AssemblyFeatureAssociation2
ArtifactAssociation(?w, ?z)
differentFrom(?x, ?y)
differentFrom(?f, ?g)

artifactAssociation2Part(?z, ?x)
artifactAssociation2Part(?z, ?y)

Table 2 Assembly Feature Association rules

The second rule is a little bit more complex because it represents the case in which the
ArtifactAssociation is between two subassemblies and the Features are relative to the
Parts that compose these subassemblies. The logic is the same but in this rule we have to
specify the relationship between the features of the Parts of the subassemblies.

The third rule is very similar to the first but the antecedent and the consequent have
switched one part. In this case it's possible to say that if two Artifacts have two Features
connected together through the AssemblyFeatureAssociation which by itself is linked to
an ArtifactAssociation, this last association will link together the Artifacts owning the
Features.

 32

Table 3 presents the AssemblyFeatureAssociationRepresentation rules. The last three
rules are consequences of the first. Once a connection is created between two Features
with an element of the class AssemblyFeatureAssociation, and association connected
with its representation, the first rule will link the representation to the Features. This will
be the input for the other rules that will associate the Features with the specification of
the representation (KinematicPair, KinematicPath, ParametricAssemblyConstraints).

Rule Antecedent Consequent

1

Feature(?f)
AssemblyFeatureAssociationRepresentation(?z)
AssemblyFeatureAssociation(?w)
AFA2Feature(?w, ?f)
AFA_2_AFAR(?w, ?z)

AFAR_2_Feature(?z, ?f)

2

Feature(?f)
AssemblyFeatureAssociationRepresentation(?z)
AFAR_2_Feature(?z, ?f)
AFAR_2_KinematicPair(?z, ?w)

KinematicPair_2_Feature(?w, ?f)

3

Feature(?f)
AssemblyFeatureAssociationRepresentation(?z)
AFAR_2_Feature(?z, ?f)
AFAR_2_KinematicPath(?z, ?w)

KinematicPath_2_Feature(?w, ?f)

4

Feature(?f)
AssemblyFeatureAssociationRepresentation(?z)
AFAR_2_Feature(?z, ?f)
AFAR_2_ParamAssConstr(?z, ?w)

ParamAssConstr_2_Feature(?w,
?f)

Table 3 Assembly Feature Association Representation rules

Table 4 presents the KinematicPath rules. These rules are useful when we want to
represent a composite path. In the first two rules a PathElement, connected with a
Feature, has either another preceding or succeeding element; as a consequence the two
KinematicPaths will be connected to the same Feature. The last two rules are similar to
the previous ones but they analyze the structure on a higher level. They connect all the
elements in the path to the same AssemblyFeatureAssociationRepresentation.

Rule Antecedent Consequent

1
PathHasConnection(?x, ?y)
KinematicPath_2_Feature(?x, ?a)
NextPathElement(?y, ?z)

KinematicPath_2_Feature(?z, ?a)

2
PathHasConnection(?x, ?y)
KinematicPath_2_Feature(?x, ?a)
PreviousPathElement(?y, ?z)

KinematicPath_2_Feature(?z, ?a)

3
PathHasConnection(?x, ?y)
KinematicPath_2_AFAR(?x, ?a)
NextPathElement(?y, ?z)

KinematicPath_2_AFAR(?z, ?a)

4
PathHasConnection(?x, ?y)
KinematicPath_2_AFAR(?x, ?a)
PreviousPathElement(?y, ?z)

KinematicPath_2_AFAR(?z, ?a)

Table 4 Kinematic Path rules

 33

Table 5 presents the main association rule. This rule infers that if two EntityAssociations
x and w connect the same CoreEntities y and x, then the EntityAssociations are the
same. This is necessary because we want to translate a binary property that unequivocally
connects two entities.

Antecedent Consequent

entityAssociation2CoreEntity(?x, ?y)
entityAssociation2CoreEntity(?x, ?z)
differentFrom(?y, ?z)
entityAssociation2CoreEntity(?w, ?y)
entityAssociation2CoreEntity(?w, ?z)

sameAs(?x, ?w)

Table 5 SameAs rule

We need just one rule because the property classes in the ontology are all children of the
EntityAssociation class, so they will adhere to the rule.

There are two partOf rules as shown in Table 6. Both are needed to link the Assembly
with all its Parts through the indirect property artifactHasPart. The advantage of
these rules is that they do not run one after another but with a special algorithm that
decomposes the structure of the Assembly. If we have several levels of the Assembly,
the algorithm will apply the rules starting from the first subassembly composed by parts.

Rule Consequent Antecedent

1 artifactHasPart_direct(?x, ?y)
Part(?y) artifactHasPart(?x, ?y)

2

artifactHasPart_direct(?x, ?y)
Assembly(?y)
artifactHasPart(?y, ?z)
Part(?z)

artifactHasPart(?x, ?z)

Table 6 PartOf rules

The last group of rules in Table 7 are needed to specify if the user explicitly wants to
build something without a meaning. The first two rules provide a case in which an
Artifact is a subassembly of itself, direct or not. The rules in Table 8 concerns the
PairFrames. For a case in which we have a KinematicPair between two Features, the
frames of this pair have to be associated with the same Features. Here, we can not use
dynamic ranges or restrictions for the properties and hence we cannot constrain the user
to specifically choose only between the Features that are connected with a
KinematicPair. For this reason the rule will consider a PairFrame as meaningless when
the user does something logically incorrect or when he uses a Feature to describe the
frame even if the Feature is not included in the KinematicPair.

 34

Rule Antecedent Consequent

1 artifactHasPart_direct(?x, ?x) meaning_less_artifact(?x)
2 artifactHasPart(?x, ?x) meaning_less_artifact(?x)

Table 7 Rules for not Allowed Artifacts

Antecedent Consequent

KinematicPair_2_Feature(?k, ?f)
KinematicPair_2_Feature(?k, ?g)
differentFrom(?f, ?g)
pair_frame(?k, ?x)
PairFrameAttribute2Feature(?x, ?h)
differentFrom(?f, ?h)
differentFrom(?g, ?h)

PairFrame_meaning_less(?x)

Table 8 Rule for not allowed Pair Frame

After defining the model, the restrictions and the SWRL rules, the next step is to verify if
it is well composed and if it can represent every condition/assembly. For this reason we
choose a use case to underline advantages and disadvantages of the OWL version of the
Open Assembly Model.

6 Case study: Planetary Gear System
This section illustrates the implementation of an industrial example used to test the OAM
ontology. The assembly model of a planetary gear system is modeled using a Computer
Aided Design (CAD) system. Section 6.1 is dedicated to explain the reasons that have led
to the selection of this particular assembly and related description. Section 6.2 presents
the implementation and instantiation of the model, together with the reasoning
capabilities performed by RACER and Jess.

6.1 Use Case Description
The Planetary Gear System is an electromechanical component normally used to change
the rotation speed or the torque of a shaft. In this example our aim is to represent a
scenario of an assembly representation to outline assembly complexity but at the same
time not to complicate the example itself. Moreover, the same example had been
previously used during the instantiation of the OAM-UML model.

The System consists of 4 subassemblies with almost 30 different parts. As with any
electromechanical component, tolerances are specifically defined for all parts. In the
chosen planetary gear system, the connection and pairs between different artifacts are of
different types.

 35

6.1.1 Components in Planetary Gear System

The solid model of the planetary gear system is shown in Figure 19.

Figure 19 Planetary Gear System

The planetary gear system consists of many components. Figure 20 shows the exploded
view of the above solid model. The list of all the components of the planetary gear
system is given in Table 9.

Figure 20 Exploded view of the Planetary Gear System

6.1.2 Assembly Hierarchy

We first need to define an assembly hierarchy for the planetary gear system. The
planetary gear system is composed of two parts and three sub-assemblies as shown in
Figure 20. The parts include the input-housing and the sungear. The three subassemblies
include: (1) the output end assembly comprising two bearings, a washer, and the output
housing; (2) the ring gear assembly comprising a ring gear and two ring-gear pins; and
(3) the planet gear holder assembly comprising three planet gears and a planet carrier
assembly, which further decomposes into the output shaft and three planet-gear pins.

 36

Table 9 Components of the Planetary Gear System

 37

Figure 21 Planetary Gear structure

The hierarchical relationships between the components of the planetary gear system can
be represented as an instance diagram as shown in Figure 22. The names take the form of
"instance name:class name". The root node is the entire assembly, the interior nodes are
sub- assemblies, and the leaf nodes are component parts.

 38

Figure 22 Planetary Gear hierarchy

The connections between parts are presented in the Figure 23. The naming conventions
are related to the types of possible connections (fc: fixed connection, mc: movable
connection, po: position orientation). These connections between parts are represented in
the model through instances of the class ArtifactAssociation.

 39

Figure 23 Connections between parts

6.1.2.1 Output Housing Assembly

Figure 24 shows the subassembly and the output housing (the output end of the planetary
gear system). It consists of four parts: bearing 1, bearing 2, washer, and output housing.
The washer goes to the inner groove of the output housing. Both bearings (ball bearings)
go into the output housing on either side of the washer with a tight fit. Bearing 1 stays
outside, and Bearing 2 stays inside of the planetary gear system.

Figure 24 Output Housing Assembly

 40

6.1.2.2 Ring Gear Assembly

The second subassembly is the ring gear assembly, shown in Figure 25. It consists of
three parts: ring gear, and ring-gear pins 1 and 2. The two ring-gear pins go into the
pinholes of the ring gear with a tight fit.

Figure 25 Ring Gear Assembly

6.1.2.3 Planet Gear-carrier Assembly

The planet gear-carrier assembly shown in Figure 26 is comprised of four parts: three
planet gears and one planet carrier assembly. The three planet gears are assembled by a
loose fit with the planet-gear pins of the planet carrier assembly.

Figure 26 Planet Gear-carrier Assembly

6.1.2.4 Planet Carrier Assembly and Sungear

The planet carrier assembly in Figure 27 is comprised of four parts: three planet-gear pins
and an output shaft. The three planet-gear pins are assembled with output shaft by a tight
fit. The sungear is assembled with the three planet gears of the planet gear-carrier
assembly by gear meshing.

 41

Figure 27 Planet Carrier Assembly and Sungear

6.1.2.5 Output Housing Assembly

Consider the output housing assembly and planet gear-carrier assembly shown in Figure
28.

Figure 28 Output Housing Assembly

The output shaft of the planet gear-assembly is inserted into the bearings of the output
housing assembly.

6.2 Use Case Implementation
In this section, the use case implementation is presented. For explanation of the Planetary
Gear System example, the structure of the ontology will be followed and every class will
be presented twice with its instances and properties. Accordingly, this section is divided
into two main parts: Input Instances and Output Instances. Note that the whole model is
composed by 145 classes, 200 properties, 70 restrictions on properties used for the class
definitions and 25 different SWRL rules. The classes that are omitted in this explanation
of the OAM ontology are either simply used to store information or are simple

 42

specifications of the presented classes or properties. The total number of instances needed
for the use case description is approximately 250.

6.2.1 Asserted Instances and Properties

In this section, each class is presented with the instances and the input properties needed
for the basic population of the model. The elements inserted in the models are necessary
for the subsequent reasoning on the ontology. In most cases, the properties in the model
have an inverse: the user has to only instantiate the property on one direction because the
other is automatically constituted by the editor. In the following tables all the properties
for every class are shown.

6.2.1.1 Asserted Artifact Instances and Properties

The class Artifact has four subclasses: Assembly, Meaningless_Artifact, Connecter
and Part. The reasoning capabilities of the model allow us to create all the instances of
Assembly directly as Artifacts and then infer them as instances of Assembly. This is
possible defining an Assembly as an Artifact composed by at least two subassemblies
(through restriction on the property artifactHasPart_direct.

The input instances of the class Artifact are presented in Table 10. In the first column of
the table are the instances of artifact. In the other columns, are the instances of the related
classes linked through the property that names these columns. From the table, notice that
the Output_Housing_Assembly is incorrectly defined i.e., composed by itself (*). This
error is purposely introduced for testing the reasoning capabilities of the ontology in
sections 5.2.1.3 (Meaning_Less_Artifact Input) and 5.2.2.3
(Meaning_Less_Artifact Output).

 Asserted Properties

Artifact Instances artifactHasPart_direct

(D:Artifact R:Artifact)

cpm2:partOfArtifact_direct

(D:Artifact R:Artifact)

Output_Housing_Assembly

Bearing_1
Bearing_2
Output_Housing
Washer
Output_Housing_Assembly*

Planetary_Gear
System_Assembly

Planet_Carrier_Assembly

Output_Shaft
Planet_Gear_Pin_1
Planet_Gear_Pin_2
Planet_Gear_Pin_3

Planetary_Gear
Carrier_Assembly

Planet_Gear
Carrier_Assembly

Planet_Gear_1
Planet_Gear_2
Planet_Gear_3
Planet_Carrier_Assembly

Planetary_Gear
System_Assembly

Ring_Gear_Assembly
Ring_Gear
Ring_Gear_Pin_1
Ring_Gear_Pin_2

Planetary_Gear
System_Assembly

Planetary_Gear
System_Assembly

Output_Housing_Assembly
Planet_Carrier_Assembly
Planet_Gear_Carrier_Assembly

--

 43

Ring_Gear_Assembly
Sungear
Input_Housing
Screw_1
Screw_2
Screw_3
Screw_4
Screw_5
Screw_6
Screw_7
Screw_8

Table 10 Artifact: asserted instances and properties

6.2.1.2 Asserted Assembly Instances and Properties

It is possible to assert all instances of the class Assembly as instances of the class
Artifact and let the reasoner (in this case RACER) reclassify the instances. At this point
the class Assembly is empty.

6.2.1.3 Asserted Meaning_Less_Artifact Instances and Properties

This class is created for managing the impossibility of blocking the creation of a self-
reference in the current version of Protégé-OWL. In the current model it is possible to
define an instance of Assembly composed by itself. Presently, there is no direct solution
and hence the class “Meaning_Less_Artifact” is created. For demonstration purposes
the wrong definition of the Output_Housing_Assembly is introduced for testing the
capability of the ontology to identify this kind of error (see 5.2.1.1 for details). Thanks to
the SWRL rules (see section 4.2 for details) created with an aim to reclassify the wrongly
defined instances (see section 5.2.2.3 for details). At the instantiation step this class is
empty.

6.2.1.4 Asserted Part Instances and Properties

Although the class Part is a subclass of the class Artifact, it is not possible to assert the
instances of the different parts as instances of Artifact and later infer them as instances
of Part as with the case of the instances of Assembly. This is due to the limitation with
OWL: it is impossible to define a class as a class without a property. An instance of Part
is an Artifact that is not composed by any other Parts but for a reasoner an Artifact
without a property (in this case artifactHasPart_direct) is not an instance of
Part but only an instance of Artifact not yet completely defined. For this reason all the
parts are created directly in the class Part.

The asserted instances and properties for the class Part are shown in Table 11.

 44

 Asserted Properties

Part Instances
partOfArtifact_direct

(D:Artifact R:Artifact)

artifactHasFeature

(D:Artifact
R:Feature)

part2ArtifactAssociation

(D:Part

R:ArtifactAssociation)

Bearing_1 Output_Housing_Assembly Inner_Race_1
Outer_Race_1

fc_2
mc_4

Bearing_2 Output_Housing_Assembly Inner_Race_2
Outer_Race_2

fc_3
mc_4

Input_Housing Planetary_Gear_System_Assembly

Stepped_Side
Thru_Hole_5
Thru_Hole_6
Thru_Hole_7
Thru_Hole_8

fc_12
fc_13

Output_Housing Output_Housing_Assembly

Bearing_Seat_1
Bearing_Seat_2
Groove
pin_Hole_9
pin_Hole_10
Thru_Hole_1
Thru_Hole_2
Thru_Hole_3
Thru_Hole_4

fc_1
fc_2
fc_3
fc_4
fc_10
fc_11

Output_Shaft Planet_Carrier_Assembly

Bearing_Seat_3
Output_Shaft_Feature
pin_Hole_3
pin_Hole_4
pin_Hole_5

fc_7
fc_8
fc_9
mc_4
po_1

Planet_Gear_1 Planet_Gear_Carrier_Assembly
pin_Cylinder_3
teeth_7
teeth_8

mc_1
mc_5
mc_9

Planet_Gear_2 Planet_Gear_Carrier_Assembly pin_Hole_7, teeth_9,
 teeth_10 mc_2, mc_6, mc_10

Planet_Gear_3 Planet_Gear_Carrier_Assembly pin_Hole_8, teeth_11,
teeth_12 mc_3, mc_7, mc_11

Planet_Gear_Pin_1 Planet_Carrier_Assembly pin_Cylinder_3,
pin_Cylinder_6 mc_1, fc_5, fc_7

Planet_Gear_Pin_2 Planet_Carrier_Assembly pin_Cylinder_4,
pin_Cylinder_7 mc_2, fc_8

Planet_Gear_Pin_3 Planet_Carrier_Assembly pin_Cylinder_5,
pin_Cylinder_8 mc_3, fc_9

Ring_Gear Ring_Gear_Assembly

pin_Hole_1,
pin_Hole_2
Ring_Gear_Side
teeth_4, teeth_5,
teeth_6
threaded_Hole_1
hreaded_Hole_2
threaded_Hole_3
threaded_Hole_4

mc_9, mc_10
mc_11, fc_5
fc_6, fc_11
fc_12, fc_13

Ring_Gear_Pin_1 Ring_Gear_Assembly
pin_Cylinder_1,
 pin_Cylinder_5
pin_Cylinder_9

fc_5
fc_10

Ring_Gear_Pin_2 Ring_Gear_Assembly
pin_Cylinder_2,
pin_Cylinder_7
pin_Cylinder_10

fc_6
fc_10

Screw_1 Planetary_Gear_System_Assembly thread_1 fc_11
Screw_2 Planetary_Gear_System_Assembly thread_2 fc_11

 45

Screw_3 Planetary_Gear_System_Assembly thread_3 fc_11
Screw_4 Planetary_Gear_System_Assembly thread_4 fc_11
Screw_5 Planetary_Gear_System_Assembly thread_5 fc_11
Screw_6 Planetary_Gear_System_Assembly thread_6 fc_11
Screw_7 Planetary_Gear_System_Assembly thread_7 fc_11
Screw_8 Planetary_Gear_System_Assembly thread_8 fc_11
Washer Output_Housing_Assembly Outer_Rim fc_1

Sungear Planetary_Gear_System_Assembly

DatumFeature_Axis1
Sun_Gear_Feature,
 teeth_1,
teeth_2, teeth_3,
Input_Shaft

mc_5, mc_6, mc_7
mc_8, po_1

Table 11 Part: asserted instances and properties

6.2.1.5 Asserted Features Instances and Properties

The class Feature has the same level of the class Artifact (both of them are children of
CoreEntity)and stores the instances that represent the features of the single parts. This
class has two direct subclasses Port and OAMFeature. Class OAMFeature further has
two subclasses used to represent the reference features as DatumFeatures. Table 12
presents the instances of the class OAMFeatures that participate in the creation of the
assemblies through the different types of connections.

 Asserted Properties

OAMFeatures
Instances

FeatureOfArtifact
(D:Feature R:Artifact)

feature2AFA

(D:Feature R:AFA)

feature2AFAR

(D:Feature R:AFAR)

Bearing_Seat_1 Output_Housing AFA_fc2 AFAR_fc2

Bearing_Seat_2 Output_Housing AFA_fc3 AFAR_fc3

Bearing_Seat_3 Output_Shaft AFA_mc4 AFAR_mc4

Groove Output_Housing AFA_fc1 AFAR_fc1

Inner_Race_1 Bearing_1 AFA_mc4 AFAR_mc4

Inner_Race_2 Bearing_2 AFA_mc4 AFAR_mc4

Outer_Race_1 Bearing_1 AFA_fc2 AFAR_fc2

Outer_Race_2 Bearing_2 AFA_fc3 AFAR_fc3

Outer_Rim Washer AFA_fc1 AFAR_fc1

Output_Shaft_Feature Output_Shaft AFA_po1 AFAR_po1

pin_Cylinder_1 Ring_Gear_Pin_1 AFA_fc5 AFAR_fc5

pin_Cylinder_2 Ring_Gear_Pin_2 AFA_fc6 AFAR_fc6

pin_Cylinder_3 Planet_Gear_1 AFA_fc7 AFAR_fc7

pin_Cylinder_4 Planet_Gear_Pin_2 AFA_fc8 AFAR_fc8

pin_Cylinder_5 Planet_Gear_Pin_3 AFA_fc9 AFAR_fc9

 46

pin_Cylinder_6 Ring_Gear_Pin_1 AFA_mc1 AFAR_mc1

pin_Cylinder_7 Planet_Gear_Pin_2 AFA_mc2 AFAR_mc2

pin_Cylinder_8 Planet_Gear_Pin_3 AFA_mc3 AFAR_mc3

pin_Cylinder_9 Ring_Gear_Pin_1 AFA_fc10 AFAR_fc10

pin_Cylinder_10 Ring_Gear_Pin_2 AFA_fc10 AFAR_fc10

pin_Hole_1 Ring_Gear AFA_fc5 AFAR_fc5

pin_Hole_2 Ring_Gear AFA_fc6 AFAR_fc6

pin_Hole_3 Output_Shaft AFA_fc7 AFAR_fc7

pin_Hole_4 Output_Shaft AFA_fc8 AFAR_fc8

pin_Hole_5 Output_Shaft AFA_fc9 AFAR_fc9

Pin_Hole_6 Ring_Gear_Pin_2 AFA_mc1 AFAR_mc1

pin_Hole_7 Planet_Gear_2 AFA_mc2 AFAR_mc2

pin_Hole_8 Planet_Gear_3 AFA_mc3 AFAR_mc3

pin_Hole_9 Output_Housing AFA_fc10 AFAR_fc10

pin_Hole_10 Output_Housing AFA_fc10 AFAR_fc10

Ring_Gear_Side Ring_Gear AFA_fc12 AFAR_fc12

Stepped_Side Input_Housing AFA_fc12 AFAR_fc12

Sun_Gear_Feature Sungear AFA_po1 AFAR_po1

teeth_1 Sungear AFA_mc5 AFAR_mc5

teeth_2 Sungear AFA_mc6 AFAR_mc6

teeth_3 Sungear AFA_mc7 AFAR_mc7

teeth_4 Ring_Gear AFA_mc9 AFAR_mc9

teeth_5 Ring_Gear AFA_mc10 AFAR_mc10

teeth_6 Ring_Gear AFA_mc11 AFAR_mc11

teeth_7 Planet_Gear_1 AFA_mc5 AFAR_mc5

teeth_8 Planet_Gear_1 AFA_mc9 AFAR_mc9

teeth_9 Planet_Gear_2 AFA_mc6 AFAR_mc6

teeth_10 Planet_Gear_2 AFA_mc10 AFAR_mc10

teeth_11 Planet_Gear_3 AFA_mc7 AFAR_mc7

teeth_12 Planet_Gear_3 AFA_mc11 AFAR_mc11

thread_1 Screw_1 AFA_fc11 AFAR_fc11

thread_2 Screw_2 AFA_fc11 AFAR_fc11

thread_3 Screw_3 AFA_fc11 AFAR_fc11

thread_4 Screw_4 AFA_fc11 AFAR_fc11

thread_5 Screw_5 AFA_fc13 AFAR_fc13

thread_6 Screw_6 AFA_fc13 AFAR_fc13

thread_7 Screw_7 AFA_fc13 AFAR_fc13

thread_8 Screw_8 AFA_fc13 AFAR_fc13

AFA_fc11 AFAR_fc11
threaded_Hole_1 Ring_Gear

AFA_fc13 AFAR_fc13

 47

AFA_fc11 AFAR_fc11
threaded_Hole_2 Ring_Gear

AFA_fc13 AFAR_fc13

AFA_fc11 AFAR_fc11
threaded_Hole_3 Ring_Gear

AFA_fc13 AFAR_fc13

AFA_fc11 AFAR_fc11
threaded_Hole_4 Ring_Gear

AFA_fc13 AFAR_fc13

Thru_Hole_1 Output_Housing AFA_fc11 AFAR_fc11

Thru_Hole_2 Output_Housing AFA_fc11 AFAR_fc11

Thru_Hole_3 Output_Housing AFA_fc11 AFAR_fc11

Thru_Hole_4 Output_Housing AFA_fc11 AFAR_fc11

Thru_Hole_5 Input_Housing AFA_fc13 AFAR_fc13

Thru_Hole_6 Input_Housing AFA_fc13 AFAR_fc13

Thru_Hole_7 Input_Housing AFA_fc13 AFAR_fc13

Thru_Hole_8 Input_Housing AFA_fc13 AFAR_fc13

Table 12 OAM Features: asserted instances

6.2.1.6 Asserted ArtifactAssociation Instances and Properties

An Assembly can be composed by several Parts and the simple enumeration of them is
represented through the properties artifactHasPart and
artifactHasPart_direct. The class ArtifactAssociation and its subclasses
(Connection, PositionOrientation and RelativeMotion) are used to represent the
relationship between the Parts that are connected for creating an Assembly . The class
Connection further has three subclasses FixedConnections, IntermittentConnections
and MovableConnections.

For example, as an instance of Assembly, Ring_Gear_Assembly is composed by the parts
Ring_Gear, Ring_Gear_Pin_1and Ring_Gear_Pin_2. This information does not provide
any information on the relation between these parts. However, the two instances of the
class FixedConnection (sub-class of ArtifactAssociation) fc_5 and fc_6 represents the
real assembly configuration. The instance fc_5 links the Ring_Gear and the
Ring_Gear_Pin_1 and fc_6 links the Ring_Gear and the Ring_Gear_Pin_2. In this way it
is possible to fully represent the Ring_Gear_Assembly structure.

In the FixedConnection class, only the relations between its instances and the parts
linked to it have to be asserted. The other properties will be inferred by the reasoner
through the SWRL rules.

The asserted instances and properties are listed in Table 13. For every instance the
subclass of pertinence is specified through the name (fc:FixedConnection
mc:MovableConnection po:PositionOrientation).

 48

 Asserted Properties Asserted Properties

ArtifactAssociation

 Instances

artifactAssociation2Part

 (D:AA R:Part)

ArtifactAssociation

 Instances

artifactAssociation2Part

(D:AA R:Part)

fc1 Washer fc13 Screw_7
fc2 Output_Housing fc13 Screw_8
fc2 Bearing_1 fc13 Ring_Gear
fc3 Output_Housing fc13 Ring_Gear
fc3 Bearing_2 fc13 Ring_Gear
fc5 Ring_Gear_Pin_1 fc13 Ring_Gear
fc5 Ring_Gear fc13 Input_Housing
fc6 Ring_Gear_Pin_2 fc13 Input_Housing
fc6 Ring_Gear fc13 Input_Housing
fc7 Planet_Gear_1 fc13 Input_Housing
fc7 Output_Shaft mc1 Ring_Gear_Pin_1
fc8 Planet_Gear_Pin_2 mc1 Ring_Gear_Pin_2
fc8 Output_Shaft mc2 Planet_Gear_Pin_2
fc9 Planet_Gear_Pin_3 mc2 Planet_Gear_2
fc9 Output_Shaft mc3 Planet_Gear_Pin_3
fc10 Ring_Gear_Pin_1 mc3 Planet_Gear_3
fc10 Ring_Gear_Pin_2 mc4 Output_Shaft
fc10 Output_Housing mc4 Bearing_1
fc10 Output_Housing mc4 Bearing_2
fc11 Screw_1 mc5 Sungear
fc11 Screw_2 mc5 Planet_Gear_1
fc11 Screw_3 mc6 Sungear
fc11 Screw_4 mc6 Planet_Gear_2
fc11 Ring_Gear mc7 Sungear
fc11 Ring_Gear mc7 Planet_Gear_3
fc11 Ring_Gear mc9 Ring_Gear
fc11 Ring_Gear mc9 Planet_Gear_1
fc11 Output_Housing mc10 Ring_Gear
fc11 Output_Housing mc10 Planet_Gear_2
fc11 Output_Housing mc11 Ring_Gear
fc11 Output_Housing mc11 Planet_Gear_3
fc12 Ring_Gear
fc12 Input_Housing Po1 Output_Shaft
Fc13 Screw_5 po1 Sungear

Table 13 ArtifactAssociation: asserted instances and properties

6.2.1.7 Asserted AssemblyFeatureAssociation Instances and Properties

The AssemblyFeatureAssociation class has the same aim of ArtifactAssociation but at
the feature level. If two parts are connected through an instance of ArtifactAssociation
(e.g. fc_1) then two Features of these parts have to be connected through an instance of
AssemblyFeatureAssociation (e.g., AFA_fc1). This class has two properties
AFA2Feature and AFA_2_AFAR. The property AFA2Feature has the similar
function as ArtifactAssociation2Part and links at least two Features realizing
an assembly constituted of two parts. The property AFA_2_AFAR links the instances of
AssemblyFeatureAssociation with AssemblyFeatureAssociationRepresentation.

 49

The AssemblyFeatureAssociationRepresentation class is used to connect the Features
with several classes used in tolerances and geometric representations. The asserted
instances and properties are shown in Table 14.

 Asserted Properties

AFA Instances
AFA_2_AFAR

(D:AFA R:AFAR)

AFA2Feature

(D:AFA R:Feature)

Groove
AFA_fc1 AFAR_fc1

Outer_Rim

Bearing_Seat_1
AFA_fc2 AFAR_fc2

Outer_Race_1

Bearing_Seat_2
AFA_fc3 AFAR_fc3

Outer_Race_2

pin_Cylinder_1

pin_Hole_1

pin_Cylinder_2
AFA_fc5 AFAR_fc5

pin_Hole_2

pin_Cylinder_3
AFA_fc7 AFAR_fc7

pin_Hole_3

pin_Cylinder_4
AFA_fc8 AFAR_fc8

pin_Hole_4

pin_Cylinder_5
AFA_fc9 AFAR_fc9

pin_Hole_5

pin_Cylinder_9

pin_Cylinder_10

pin_Hole_9
AFA_fc10 AFAR_fc10

pin_Hole_10

thread_1

thread_2

thread_3

thread_4

threaded_Hole_1

threaded_Hole_2

threaded_Hole_3

threaded_Hole_4

Thru_Hole_1

Thru_Hole_2

Thru_Hole_3

AFA_fc11 AFAR_fc11

Thru_Hole_4

AFA_fc12 AFAR_fc12 Ring_Gear_Side

 50

Stepped_Side

thread_5

thread_6

thread_7

thread_8

threaded_Hole_1

threaded_Hole_2

threaded_Hole_3

threaded_Hole_4

Thru_Hole_5

Thru_Hole_6

Thru_Hole_7

AFA_fc13 AFAR_fc13

Thru_Hole_8

pin_Cylinder_6
AFA_mc1 AFAR_mc1

Pin_Hole_6

pin_Cylinder_7
AFA_mc2 AFAR_mc2

pin_Hole_7

pin_Cylinder_8
AFA_mc3 AFAR_mc3

pin_Hole_8

Bearing_Seat_3

Inner_Race_1 AFA_mc4 AFAR_mc4

Inner_Race_2

teeth_1
AFA_mc5 AFAR_mc5

teeth_7
teeth_2

AFA_mc6 AFAR_mc6
teeth_9
teeth_3

AFA_mc7 AFAR_mc7
teeth_11
teeth_4

AFA_mc9 AFAR_mc9
teeth_8
teeth_5

AFA_mc10 AFAR_mc10
teeth_10

teeth_6
AFA_mc11 AFAR_mc11

teeth_12

Output_Shaft_Feature
AFA_po1 AFAR_po1

Sun_Gear_Feature

Table 14 AssemblyFeatureAssociation: asserted instances and properties

 51

6.2.1.8 Asserted AssemblyFeatureAssociationRepresentation Instances
and Properties

This class is used to link the Features with the geometric representation and tolerance
specifications. For the correct connection between the Features and the detailed
information cited before, two properties are specified for this class: AFAR_2_AFA and
AFAR_2_Feature. The first has to be asserted. The second will be inferred. (see Table
15).

 Asserted Properties Asserted Properties

AFAR Instances
AFAR_2_AFA

(D:AFAR R:AFA)
AFAR Instances

AFAR_2_AFA

(D:AFAR R:AFA)

AFAR_fc1 AFA_fc1 AFAR_mc1 AFA_mc1

AFAR_fc2 AFA_fc2 AFAR_mc2 AFA_mc2

AFAR_fc3 AFA_fc3 AFAR_mc3 AFA_mc3

AFAR_fc5 AFA_fc5 AFAR_mc4 AFA_mc4

AFAR_fc7 AFA_fc7 AFAR_mc5 AFA_mc5

AFAR_fc8 AFA_fc8 AFAR_mc6 AFA_mc6

AFAR_fc9 AFA_fc9 AFAR_mc7 AFA_mc7

AFAR_fc10 AFA_fc10 AFAR_mc9 AFA_mc9

AFAR_fc11 AFA_fc11 AFAR_mc10 AFA_mc10

AFAR_fc12 AFA_fc12 AFAR_mc11 AFA_mc11

AFAR_fc13 AFA_fc13 AFAR_po1 AFA_po1

Table 15 AssemblyFeatureAssociationRepresentation: asserted instances and
properties

6.2.2 Inferred Instances and Properties

In this section the output instances of each class will be presented. The term output
instances refer to the instances that are inferred with the reasoning software (RACER or
Jess) and the SWRL rules.

6.2.2.1 Inferred Artifact Properties

After the reasoning with RACER and Jess the input instances of Artifact are inferred
(thanks to RACER) as instances of the class Assembly. For details see the following
section.

6.2.2.2 Inferred Assembly Properties

After reasoning, the class Assembly is not empty anymore (see Table 16). The reasoning
performed by RACER on the restriction defined for this class on the property

 52

artifactHasPart_direct min 2 has inferred the instances asserted in the class
Artifact as elements of the class Assembly.

The Jess reasoning based on the SWRL (see section 5.2 for more details) rules has
inferred not only the parts that constitute every instance of Assembly but also its related
instances of ArtifactAssociation (see 6.2.1.1 for details on the reflexive definition of
Output_Housing_Assembly).

 Inferred Properties

Assembly Instances
artifactHasPart

(D:Artifact R:Artifact)

assembly2ArtifactAssociation

(D:Assembly
R:ArtifactAssociation)

Output_Housing_Assembly

Bearing_1
Bearing_2
Output_Housing
Washer
Output_Housing_Assembly*

fc_1
fc_2
fc_3
mc_4

Planet_Carrier_Assembly

Output_Shaft
Planet_Gear_Pin_1
Planet_Gear_Pin_2
Planet_Gear_Pin_3

fc_7
fc_8
fc_9

Planet_Gear_Carrier_Assembly

Planet_Gear_1
Planet_Gear_2
Planet_Gear_3
Planet_Carrier_Assembly

mc_1
mc_2
mc_3

Ring_Gear_Assembly

Ring_Gear
Ring_Gear_Pin_1
Ring_Gear_Pin_2

fc_6
fc_10

Planetary_Gear_System_Assembly

Bearing_1
Bearing_2
Output_Housing
Washer
Output_Shaft
Planet_Gear_Pin_1
Planet_Gear_Pin_2
Planet_Gear_Pin_3
Planet_Gear_1
Planet_Gear_2
Planet_Gear_3
Ring_Gear
Ring_Gear_Pin_1
Ring_Gear_Pin_2
Sungear
Input_Housing
Screw_1
Screw_2
Screw_3
Screw_4
Screw_5
Screw_6
Screw_7

mc_1
mc_2
mc_3
mc_4
mc_5
mc_6
mc_7
mc_9
mc_10
mc_11
po_1
fc_5
fc_7
fc_8
fc_9
fc_10
fc_11
fc_12
fc_13

 53

Screw_8

Table 16 Assembly inferred properties

6.2.2.3 Inferred Meaning_Less_Artifact Instances

After the Jess reasoning, the Meaning_Less_Artifact class (see Section 5.2.1.3) is no
longer empty. Two instances of the class Artifact are reclassified as not well defined. In
Table 17 the reclassified instances are presented.

Meaning_Less_Artifact Instances

Output_Housing_Assembly

Planetary_Gear_System_Assembly

Table 17 Meaning_Less_Artifact inferred instances

As expected, the instance (Output_Housing_Assembly) with a self reference
(inadmissible in assembly representation) is reclassified as element of this class. Also
notice that the Planetary_Gear_System_Assembly is reclassified to this class since the
inadmissible Output_Housing_Assembly is a sub-assembly of the
Planetary_Gear_System_Assembly.

6.2.2.4 Inferred Part Properties

After the Jess engine reasoning, the indirect property partOfArtifact, inverse of
the property artifactHasPart, is inferred for each instance. For example, the
instance Bearing_1 is directly a part of the Output_Housing_Assembly, which in turn is a
part of the Planetary_Gear_System_Assembly. The Bearing_1 is inferred both as part of
the Output_Housing_Assembly and Planetary_Gear_System_Assembly. The inferred
properties are presented in Table 18.

 Inferred Instances

Part Instances
partOfArtifact

(D:Artifact R:Artifact)

Bearing_1- 2 Output_Housing_Assembly
Planetary_Gear_System_Assembly

Input Housing Planetary_Gear_System_Assembly

Output_Housing Output_Housing_Assembly
Planetary_Gear_System_Assembly

Output_Shaft
Planet_Carrier_Assembly
Planet_Gear_Carrier_Assembly
Planetary_Gear_System_Assembly

Planet_Gear_1 - 3 Planet_Gear_Carrier_Assembly
Planetary_Gear_System_Assembly

Planet_Gear_Pin_1 -3
Planet_Carrier_Assembly
Planet_Gear_Carrier_Assembly
Planetary_Gear_System_Assembly

 54

Ring_Gear Ring_Gear_Assembly
Planetary_Gear_System_Assembly

Ring_Gear_Pin_1- 2 Ring_Gear_Assembly
Planetary_Gear_System_Assembly

Screw_1 – Screw 8 Planetary_Gear_System_Assembly
Sungear Planetary_Gear_System_Assembly

Washer Output_Housing_Assembly
Planetary_Gear_System_Assembly

Table 18 Part: inferred properties

6.2.2.5 Inferred Feature Instances and Properties

The class Feature has to be completely defined from the beginning. As this is the lowest
level of the representation, it is not possible to infer anything about the Features from the
structure of the Assemblies.

6.2.2.6 Inferred ArtifactAssociation Properties

With the SWRL rules the Jess reasoning engine is able to infer the properties:
artifactAssociation2Assembly and
artifactAssociation2AssemblyFeatureAssociation. The first is the
inverse of the property assembly2ArtifactAssociation inferred for the class
Assembly. The second is the property that links the instances of this class with the ones
of the class AssemblyFeatureAssociation that has the same rules of the class
ArtifactAssociation but on the features level (Table 19).

 Inferred Properties

ArtifactAssociation

Instancies

artifactAssociation2Assembly

(D:Artifact R:Assembly)

artifactAssociation2AFA

(D:ArtifactAssociation
R:AssemblyFeatureAssociation)

fc_1 Output_Housing_Assembly AFA_fc1

fc_2 Output_Housing_Assembly AFA_fc2
fc_3 Output_Housing_Assembly AFA_fc3

fc_3 Output_Housing_Assembly AFA_fc3

fc_5 Planetary_Gear_System_Assembly AFA_fc5

fc_6 Ring_Gear_Assembly AFA_fc6

fc_7 Planet_Carrier_Assembly AFA_fc7

fc_8 Planet_Carrier_Assembly AFA_fc8

fc_9 Planet_Carrier_Assembly AFA_fc9

AFA_fc10 fc_10 Ring_Gear_Assembly
AFA_mc1

fc_11 Planetary_Gear_System_Assembly AFA_fc11

AFA_fc12 fc_12 Planetary_Gear_System_Assembly
AFA_fc13

 55

AFA_fc12 fc_13 Planetary_Gear_System_Assembly
AFA_fc13

mc_1 Planet_Gear_Carrier_Assembly AFA_mc1

mc_2 Planet_Carrier_Assembly AFA_mc2

mc_3 Planet_Gear_Carrier_Assembly AFA_mc3

mc_4 Output_Housing_Assembly AFA_mc4

mc_5 Planetary_Gear_System_Assembly AFA_mc5

mc_6 Planetary_Gear_System_Assembly AFA_mc6

mc_7 Planetary_Gear_System_Assembly AFA_mc7

mc_9 Ring_Gear_Assembly AFA_mc9

mc_10 Planet_Gear_Carrier_Assembly AFA_mc10

mc_10 Planet_Gear_Carrier_Assembly AFA_mc10

mc_11 Planet_Gear_Carrier_Assembly AFA_mc11

po_1 Planetary_Gear_System_Assembly AFA_po1

po_1 Planet_Carrier_Assembly AFA_po1

Table 19 ArtifactAssociation: inferred properties

6.2.2.7 Inferred AssemblyFeatureAssociation Properties

After the reasoning, the property between the two classes AssemblyFeatureAssociation
and ArtifactAssociation is inferred
(AssemblyFeatureAssociation2ArtifactAssociation). This is possible
with the Jess engine and SWRL rules (see section 5.2 for details). Rules form the
relationships between parts and features, between parts and artifacts associations and
between features. The class AssemblyFeatureAssociation permits the deduction of the
property (see Table 20).

 Inferred Properties

AFA Instances
AssemblyFeatureAssociation2ArtifactAssociation

(D:AFA R:ArtifactAssociation)

AFA_fc1 fc_1

AFA_fc2 fc_2

AFA_fc3 fc_3

AFA_fc5 fc_5

AFA_fc7 fc_7

AFA_fc8 fc_8

AFA_fc9 fc_9

AFA_fc10 fc_10

AFA_fc11 fc_11

AFA_fc12 fc_12

 56

AFA_fc13 fc_13

AFA_mc1 mc_1

AFA_mc2 mc_2

AFA_mc3 mc_3

AFA_mc4 mc_4

AFA_mc5 mc_5

AFA_mc6 mc_6

AFA_mc7 mc_7

AFA_mc9 mc_9

AFA_mc10 mc_10

AFA_mc11 mc_11

AFA_po1 po_1

Table 20 AssemblyFeatureAssociation: inferred property

6.2.2.8 Inferred AssemblyFeatureAssociationRepresentation Properties

The inferred property is AFAR_2_Feature. From the asserted properties that links the
class AssemblyFeatureAssociationRepresentation to AssemblyFeatureAssociation
and AssemblyFeatureAssociation to Feature, the reasoner is able to infer the property
AFAR_2_Feature. The detailed inferred instances are presented in Table 21.

 Inferred Properties Inferred Properties

AFAR

Instances

AFAR_2_Feature

(D:AFAR R:Feature)

 AFAR

Instances

AFAR_2_Feature

 (D:AFAR R:Feature)

Groove thread_5
AFAR_fc1

Outer_Rim thread_6

Bearing_Seat_1 thread_7
AFAR_fc2

Outer_Race_1 thread_8

Bearing_Seat_2 threaded_Hole_1
AFAR_fc3

Outer_Race_2 threaded_Hole_2

pin_Cylinder_1 threaded_Hole_3

pin_Hole_1 threaded_Hole_4

pin_Cylinder_2 Thru_Hole_5
AFAR_fc5

pin_Hole_2 Thru_Hole_6

pin_Cylinder_3 Thru_Hole_7
AFAR_fc7

pin_Hole_3

AFAR_fc13

Thru_Hole_8

pin_Cylinder_4 pin_Cylinder_6
AFAR_fc8

pin_Hole_4
AFAR_mc1

Pin_Hole_6

pin_Cylinder_5 pin_Cylinder_7
AFAR_fc9

pin_Hole_5
AFAR_mc2

pin_Hole_7

 57

pin_Cylinder_9 pin_Cylinder_8

pin_Cylinder_10
AFAR_mc3

pin_Hole_8

pin_Hole_9 Bearing_Seat_3
AFAR_fc10

pin_Hole_10 Inner_Race_1

thread_1

AFAR_mc4

Inner_Race_2

thread_2 teeth_1

thread_3
AFAR_mc5

teeth_7

thread_4 teeth_2

threaded_Hole_1
AFAR_mc6

teeth_9

threaded_Hole_2 teeth_3

threaded_Hole_3
AFAR_mc7

teeth_11

threaded_Hole_4 teeth_4

Thru_Hole_1
AFAR_mc9

teeth_8

Thru_Hole_2 teeth_5

Thru_Hole_3
AFAR_mc10

teeth_10

AFAR_fc11

Thru_Hole_4 teeth_6

Ring_Gear_Side
AFAR_mc11

teeth_12
AFAR_fc12

Stepped_Side Output_Shaft_Feature

AFAR_po1

Sun_Gear_Feature

Table 21 AssemblyFeatureAssociationRepresentation: inferred properties

6.2.3 Kinematic Information Representation

The Planetary Gear System is used for transmitting motion and for this reason the model
has to be able to represent the relative motion of the single parts.

Figure 29 Kinematic Diagram of Planetary Gear System

 58

Figure 29 illustrates the Kinematic Diagram of Planetary Gear System. Table 22 presents
the kinematic pairs and the associated parts that are identified from the planetary gear
system. For convenience, numbers are used to distinguish the three planet gears and the
kinematic pairs of the same type. As shown in Table 22, two types of kinematic pairs
(GearPair and RevolutePair) are used in the planetary gear system.

Kinematic Pairs Associated Parts

Revolute Pair 1 Unknown Support – Sungear (Input Shaft)

Gear Pair 1 Sungear – Planet Gear 1

Gear Pair 2 Sungear – Planet Gear 2

Gear Pair 3 Sungear – Planet Gear 3

Gear Pair 4 Planet Gear 1 – Ring Gear

Gear Pair 5 Planet Gear 2 – Ring Gear

Gear Pair 6 Planet Gear 3 – Ring Gear

Revolute Pair 2 Planet Gear 1 – Planet Carrier

Revolute Pair 3 Planet Gear 2 – Planet Carrier

Revolute Pair 4 Planet Gear 3 – Planet Carrier

Revolute Pair 5 Planet Carrier – Bearing

Table 22 Kinematic Pairs and Associated Parts of Planet Gear System

Assigning frames to each link (part) of the gear system is essential to describe the
movements of each part. In general, two coordinate systems or frames are needed to
describe the kinematic behavior of any KinematicPair, each attached to a link of the
pair. Considering that a binary link is associated with two KinematicPairs (one with the
preceding link and the other with the following link), there are two frames associated
with the link. The KinematicPairs (instances of classes GearPair and RevolutePair)
contain their specific kinematic information (constraints of the pair) to describe their own
behavior and they are connected with the class AFAR through the property
AFAR_2_KinematicPair and with the class Feature through the property
feature_2_KinematicPair. It is also possible to represent the path of each
movement with specific geometric characteristics through subclasses of the classes
KinematicPair and KinematicPath. With this representation every movement could be
represented in the OAM-OWL and thereby possible to perform reasoning between the
classes KinematicPair, KinematicPath, AFAR and Feature.

6.2.4 Tolerance Representation in the Planetary Gear System

The tolerance schema is adopted from the OAM-UML, which is based on the standard
ASME Y14.5 M [45]. For every type of tolerance defined in the standard, a class is
defined to represent the tolerance value and other needed information. For example,
consider the Sungear and its tolerances as in Figure 30.

 59

Figure 30 Sungear tolerances

Consider the highlighted Sun_Gear_Feature on the top of the Sungear. Notice that there
are two different tolerances defined: a cylindricity tolerance and dimensional tolerance.
This means that in the class Tolerance of the model two instances have to be created and
linked through the property OAMFeature_toleranced_by (domain: feature
range:Tolerance) to the Sun_Gear_Feature instance. To define a cylindricity tolerance, a
reference axis is needed and with this aim a new feature has to be added to the Sungear:
the DatumFeature_Axis_1. This particular instance is created in the class DatumFeature
that is a subclass of OAMFeature. After setting DatumFeature_Axis_1 as reference for
the cylindricity tolerance it is possible to define its attributes. The dimension of the
tolerance is implemented as an instance with a numeric value of a dedicated class called
Size. This choice is done to allow for reusing the same tolerance data when possible. For
the dimensional tolerance the steps are the same but the creation of a datum reference is
not needed.

7 Results and Discussion
Even if the interoperability between different systems is growing, the current PLM
solutions are inefficient while screening data (usually in terabytes) clustered in
companies. This necessitates a need for a data analysis system. This scenario is due to the
inherent drawback with the commonly used approaches, to give any sort of meaning to
the stored data to help systems to understand/react immediately to the kind of information
saved in a particular cluster. This problem is present in any entity that collects great
quantity of data (an entity could be anything from a whole organization, a single division
or office). Generally every entity has good knowledge of the kind of data it manages
(nevertheless may still need the assistance of a dedicated data analysis tool). However,
this knowledge can become complex if we refer to different subjects of a supply chain or
to a set of divisions or facilities trying to share data in a PLM context. The aim of this

 60

work, i.e., the development of an OWL version of the Open Assembly Model fits the
above mentioned scenario. The underlying reasons for the creation of the OWL version
of the assembly model are:

• A standard data structure developed directly in a Web-oriented language such as
OWL: this assures the highest level of compatibility and diffusion.

• New reasoning capabilities offered by the ontological approach: OWL is developed
with the intent of supporting the growth of the Semantic Web and offers the
possibility to give to the data structure not only a format but a meaning intelligible
by a computer. This allows the machines to reason this ontology to deduct
knowledge and more information from the stored data.

The proposed OAM-OWL aims to address a data representation model for
interoperability between software platforms with a capability of sharing meaningful
stored data. In the subsequent Section 7.1 the novelty of the OAM model will be
discussed along with a brief analysis of its capability. Section 7.2 presents a discussion on
certain limitations scopes for future research.

7.1 Model Advantages
The first advantage of an ontological approach is the possibility to use the rich
Vocabulary defined for this language. In the OWL model, it is possible to use classes and
properties to define any kind of relation between different elements of representation.
The property-based nature of OWL allows us to create all operations possible using sets.
Concepts such as intersection and union can be used to tailor modeling activities based on
the specific needs of the developer and recur to the definition of cardinality constraints if
needed. The conceptual difference between UML and OWL offers the advantage to
define on the same properties different constraints for different classes.

The structure and the semantic nature of the OWL model can be understood and reasoned
by suitable reasoning software. In this application we deployed RACER to check the
consistency of the developed ontology, to reclassify classes and to infer the related
instances.

The consistency check capability of the reasoner is helpful for testing the correctness of
the developed model and to find class definition or restrictions that could be contrasting.
This is much more than a simple error check. The consistency check is aimed to test if the
semantic (meaning) included in the model makes sense and not just the syntax.

The class reclassification is another interesting feature offered by RACER. Let’s consider
the previous example of the two-seat and four-seat cars with an added class car. The class
car is defined as the class that contains all the elements with four wheels and with no
precise number of passengers. If we add the condition (to be a car it has to have four
wheels) to the two previous classes then the reasoner will reclassify the two- and four-
seats cars as subclasses of the class car.

 61

RACER has the capability to infer instances of classes as elements of a different class
that are of immediate relevance. Following the restrictions and the cardinality constraints
defined in the model the reasoner is able to understand (infer) the particular kind of
instance to be analyzed. This means that after the reclassification of the classes of the car
in the earlier example, if an instance of car is created and is defined as a car with two
seats, the reasoner will infer that in the ontology there is a two-seat car inserted.

The reasoning performed with RACER is useful for testing the consistency of the
ontology and for relocating instances following the class definition. These are already
good improvements to the previous versions of the models, but with the Jess engine it is
possible to extract much more knowledge from the stored data. Jess is a rule engine that
is able to process rules written with SWRL. With the combination of these two elements
it is possible to define any rule on the representation and with the reasoning function Jess
is able to add knowledge to the stored information. The level of complexity is higher than
in the RACER reasoning. As with RACER, the inferred properties are directly related to
the intrinsic structure of the ontology and hence limited to the comparison between the
characteristics of any single instance and classes definitions. With Jess, the operation is
performed on the ontology by the Jess engine through the SWRL rules and is more like a
deduction then a simple comparison. Consider for example one of the reasonings
performed in the implemented model to clarify this concept.

In the Planetary Gear Example, to create an assembly the connection between two parts is
needed and it is represented by a relationship between two features of those parts. Only
by specifying the relation between the two features of the two parts, the model is able to
infer that the two parts have to be connected.

7.2 Limitations and future research directions
The OWL-OAM model has some criticisms, most of them inherent to the version of the
language OWL 1.1 used and its integration with the tool Protégé-OWL. This can be
attributed to the fact that both of them are still new and evolving. The final specification
of OWL (1.1) was released in 2004 and Protégé is still available only in beta version. The
first limitation of the current version of OWL 1.1 is the impossibility to define dynamic
ranges for properties. Considering the example in Figure 31, it is impossible to specify
that the range of the property A2C has to be represented by the elements of C connected
with elements of B.

Figure 31 Dynamic Range Example

 62

This kind of structure could be useful to immediately identify (in large instantiated
models) the instances of a class related with a particular instance.

Another limitation is related to the Open World Assumption present in the current
version of OWL. The Open World Assumption makes it impossible to define an element
as “is not an…”. It is possible to define set operations for defining classes but, due to the
Open World Assumption, it is not possible to define in a given set a subset and it’s
complement. In Figure 32 there exists a set with two subsets defined as partitions of the
biggest set, but there still exists another element that is not a part of the two subsets.

Figure 32 Open World Assumption

Considering the OAM-OWL class Artifact and its subclasses Assembly and Part, it is
not possible to define as parts all the artifacts that are not assemblies. These instances will
be considered as simple artifacts.

The previous problem could not be solved even with the SWRL rules. In fact, in the
actual version of SWRL, logic operators like OR, NOT and XOR are not present.
Although it is possible to infer that an Artifact created by many parts is an Assembly, it is
impossible to infer that an Artifact not composed by parts is a Part.

Another problem is associated with the current version of Protégé-OWL. In fact it is not
possible to accept inferred instances. Even if the tool recognizes that an Artifact created
by many parts is an Assembly, it is not possible to specify some properties concerning
only Assembly. This issue is expected to be solved with the next release of the tool.

All the open issues discussed above will be solved with the new release of OWL 2.0.
Besides the issues, we can still appreciate the potentialities of the new ontology for the
representation of the Open Assembly Model. This work can be considered an initial step
in the standardization process within the PLM applications.

8 Acknowledgements
The authors wish to acknowledge the valuable comments, suggestions and improvements
from Dr.Steven Fenves, Dr.Eswaran Subrahmanian and from all the researchers of the

 63

Design Process Group. Their comments have substantially improved and shaped the
report.

9 Disclaimer
No approval or endorsement of any commercial product by NIST is intended or implied.
Certain commercial equipment, instruments or materials are identified in this report to
facilitate better understanding. Such identification does not imply recommendations or
endorsement by NIST nor does it imply the materials or equipment identified are
necessarily the best available for the purpose.

10 References
 1. ISO. ISO 13584-1:2001, Industrial automation systems and integration -- Parts

library -- Part 1: Overview and fundamental principles. 2001. ISO.

 2. ISO. IEC 62264-2:2004, Enterprise-control system integration. 2004. ISO.

 3. ISO 10303-1:1994, Industrial automation systems and integration -- Product data
representation and exchange -- Part 1: Overview and fundamental principles.

 4. Porter, M. How competitive forces shape strategy. 1979. Harvard business Review,
Harvard business Review.

 5. Product Life Cycle Support (PLCS), Frequently Asked Questions.
http://xml.coverpages.org/PLCSInc-FAQv2-20030804.pdf . 8-4-2003.

 6. OMG. UML 2.0: Infrastucture. 5-7-2005.

 7. Fenves, S. J. A Core Product Model For Representing Design Information. NISTIR
6736. 2001. Gaithersburg, MD 20899, USA, National Institute of Standards and
Technology.

 8. Fenves, S, Foufou, S, Bock, C, Bouillon, N, and Sriram, R. D. CPM2: A Revised
Core Product Model for Representing Design Information . NISTIR 7185. 2004.
Gaithersburg, MD 20899, USA, National Institute of Standards and Technology.

 9. Baysal, M. M, Roy, U, Sudarsan, R, Sriram, R. D, and Lyons, K. W. The Open
Assembly Model for the Exchange of assembly and tolerance information: overview
and example. 2004. Salt Lake City, Utah.

 10. Web Ontology Language (OWL). http://www.w3.org/2004/OWL/ . 2005.

http://xml.coverpages.org/PLCSInc-FAQv2-20030804.pdf�
http://www.w3.org/2004/OWL/�

 66

11 Appendix
A few snapshots of the Model in Protégé OWL:

Snapshot A1 Subclass Explorer

 68

Snapshot A3 Class Browser

